Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(v_0=20mm/s=0,02m/s\)
a)Đây là bài toán vật rơi tự do.
Phương trình quỹ đạo: \(y=\dfrac{g}{2v_0}x^2=\dfrac{10}{2\cdot0,02}x^2=250x^2\)
Phương trình vận tốc: \(v=\sqrt{\left(gt\right)^2+v_0^2}=\sqrt{100t^2+4\cdot10^{-3}}\left(m/s\right)\)
b)Thời gian viên bi đạt độ cao cực đại:
\(v=v_0-gt\Rightarrow t=\dfrac{v-v_0}{-g}=\dfrac{0-0,02}{-10}=0,002s\)
Độ cao vật đạt cực đại:
\(H=h_0+\dfrac{v_0^2}{2g}=25+\dfrac{0,02^2}{2\cdot10}=25,00002m\)
c)Thời gian vật quay lại vị trí ban đầu sẽ bằng 2 lần thời gian vật đi đến độ cao cực đại.
\(\Rightarrow T=2t=0,004s\)
d)Thời gian viên đá rơi từ độ cao cực đại đến khi chạm đất là:
\(t'=\sqrt{\dfrac{2h_{max}}{g}}=\sqrt{\dfrac{2\cdot25,00002}{10}}\approx2,236s\)
Thời gian để bi chạm đất: \(T'=t+t'=2,238s\)
Vận tốc bi trước khi chạm đất:
\(v=\sqrt{v_0^2+\left(gt\right)^2}=\sqrt{0,02^2+\left(10\cdot2,238\right)^2}=22,38m/s\)
a. Chọn hệ quy chiếu Oxy như hình vẽ
Thời điểm ban đầu
Chiếu lên trục ox có
x 0 = 0 ; v 0 x = v 0 c o s α = 10 2 ( m / s )
Chiếu lên trục oy có
y 0 = 0 ; v 0 y = v 0 s i n α = 10 √ 2 ( m / s )
Xét tại thời điểm t có a x = 0 ; a y = - g
Chiếu lên trục ox có
v x = 10 √ 2 ( m / s ) ; x = 10 √ 2 t
Chiếu lên trục Oy có
v y = 10 √ 2 - 10 t ; y = 45 + 10 √ 2 t - 5 t 2
⇒ y = 45 + x - x 2 40 Vậy vật có quỹ đạo là một Parabol
Khi lên đến độ cao max thì: v y = 0 ⇒ 0 = 10 √ 2 - 10 t ⇒ t = √ 2 ( s )
H m a x = y = 45 + 10 . √ 2 . √ 2 - 5 ( √ 2 ) 2 = 55 ( m )
Khi vật chạm đất thì y = 0 ⇒ 45 + 10 √ 2 t - 5 t 2 = 0 ⇒ t = 4 , 73 ( s )
Vậy sau 4,73s thì vật chạm đất
b. Tầm xa của vật L = x = 10 √ 2 . 4 , 73 ≈ 66 , 89 ( m )
Vận tốc vật khi chạm đất v = v x 2 + v y 2
Với v y = 10 √ 2 - 10 . 4 , 73 = 33 , 16 ( m / s )
⇒ v = √ ( ( 10 √ 2 ) 2 + 33 , 〖 16 〗 2 ) = 36 , 05 ( m / s )
c. Khi vật có độ cao 50 thì
y = 50 = 45 + 10 √ 2 t - 5 t 2 ⇒ t 1 = 2 , 414 ( s ) ; t 2 = 0 , 414 ( s )
Lúc t 1 = 2 , 414 ( s ) ⇒ v 1 = 10 √ 2 - 10 t 1 = 10 √ 2 - 10 . 2 , 414 ≈ - 10 ( m / s )
Lúc t 2 = 0 , 414 ( s ) ⇒ v 2 = 10 √ 2 - 10 t 2 = 10 √ 2 - 10 . 0 , 414 ≈ 10 ( m / s )
Ứng với hai trường hợp vật đi xuống đi lên
Ta có:
+ Theo phương Ox: v x = v 0
+ Theo phương Oy: v y = g t
Độ lớn của vận tốc tại vị trí bất kì: v = v x 2 + v y 2 = v 0 2 + g 2 t 2
Đáp án: B
a)
Cơ năng tại O (vị trí ném): \(W_o=\dfrac{1}{2}mv_o^2+mgz_o\)
Cơ năng tại B (mặt đất): \(W_B=\dfrac{1}{2}mv_B^2\)
Áp dụng định luật bảo toàn cơ năng tại O và A ta có:
\(W_O=W_B\Leftrightarrow\) \(\dfrac{1}{2}mv_O^2+mgz_o=\dfrac{1}{2}mv_B^2\Leftrightarrow v_O^2=2gh\Rightarrow h=\dfrac{v_B^2-v_O^2}{2g}=25m\)
b) Khi đạt độ cao cực đại thì vtoc vật = 0
\(\Leftrightarrow\dfrac{1}{2}mv_B^2=mgh_{cđ}\Leftrightarrow h_{cđ}=\dfrac{v_B^2}{2g}=45m\)
c) \(W_đ=W_t\Leftrightarrow W_đ=\dfrac{1}{2}W_B\Leftrightarrow\dfrac{1}{2}mv^2=\dfrac{1}{2}.\dfrac{1}{2}mv_B^2\Leftrightarrow v=10\sqrt{2}\left(\dfrac{m}{s}\right)\)
a)
Chọn chiều (+) hướng lên. Gốc thời gian lúc bắt đầu ném
\(y=v_0t+\frac{gt2}{2}=20t-5t^2\) (1)
\(v=v_0+gt=20-10t\) (2)
Tại điểm cao nhất v=0
Từ (2) \(\Rightarrow\) t=2(s) thay vào (1)
yM = 20(m)
b)
Khi chạm đất y=0 từ (1)\(\Rightarrow\) t=0 và t=4 (s)
Thay t = 4 (s) vào (2) \(v'=-20m\text{/}s\)
(Dấu trừ (-) vận tốc ngược với chiều dương.)