K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2021

Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)

=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất

=> |x - 2019| + 2021 nhỏ nhất

Ta có: \(\left|x-2019\right|\ge0\)

\(\Rightarrow\left|x-2019\right|+2021\ge2021\)

Dấu "=" xảy ra khi x - 2019 = 0

=> x = 2019

\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)

Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).

AH
Akai Haruma
Giáo viên
27 tháng 12 2023

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$

$|x-2020|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$

Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$

Tức là $x=2020$

10 tháng 5 2022

Theo bđt cosi 

\(P=\left|x-2019\right|+\dfrac{2020}{\left|x-2019\right|}+2021\ge2\sqrt{\dfrac{\left|x-2019\right|.2020}{\left|x-2019\right|}}+2021=4\sqrt{505}+2021\)

Dấu ''='' xảy ra khi \(x-2019=2020\Leftrightarrow x=4039\)

10 tháng 5 2022

anh ơi, anh tick em câu này được ko ạ, tick được thì em cảm ơn ạ

https://hoc24.vn/cau-hoi/quang-duong-tu-tinh-a-den-tinh-b-dai-950-km-vay-tren-ban-do-co-ti-le-1-1-000-000-thi-quang-duong-do-dai-la-cm.6180857381096

5 tháng 1 2022

\(A=\left(\left|x-1\right|+\left|2020-x\right|\right)+\left(\left|x-2\right|+\left|2019-x\right|\right)+...+\left(\left|x-1009\right|+\left|1010-x\right|\right)\\ A\ge\left|x-1+2020-x\right|+\left|x-2+2019-x\right|+...+\left|x-1009+1010-x\right|\\ A\ge2019+2017+...+1=\dfrac{2020\left[\left(2019-1\right):2+1\right]}{2}=1020100\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(2020-x\right)\ge0\\...\\\left(x-1009\right)\left(1010-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2020\\...\\1009\le x\le1010\end{matrix}\right.\)

\(\Leftrightarrow1009\le x\le1010\)

21 tháng 8 2020

làm nốt câu này rồi đi ngủ 

\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)

Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN 

Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)

Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được : 

\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)

Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)

Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)

Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)

21 tháng 11 2019

\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\)

\(=\frac{\left|x+2019\right|+2021-1}{\left|x-2019\right|+2021}\)

\(=1-\frac{1}{\left|x-2019\right|+2021}\)

\(\ge1-\frac{1}{\left|2019-2019\right|+2021}=1-\frac{1}{2021}=\frac{2020}{2021}\)

Dấu "=" xảy ra tại \(x=2019\)

21 tháng 11 2019

                                                            Bài giải

\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)

A đạt GTNN khi \(\frac{1}{\left|x-2019\right|+2021}\) đạt GTLN \(\Leftrightarrow\text{ }\left|x-2019\right|+2021\) đạt GTNN

          Mà \(\left|x-2019\right|\ge0\) Dấu " = " xảy ra khi x - 2019 = 0 => x = 2019

\(\Rightarrow\text{ }\left|x-2019\right|+2021\ge2021\)

\(\Rightarrow\text{ }\frac{1}{\left|x-2019\right|+2021}\le\frac{1}{2021}\)

\(\Rightarrow\text{ }A\ge1-\frac{1}{2021}=\frac{2020}{2021}\)

25 tháng 10 2020

Ta có: \(|x-2019|\ge0\forall x\in Q\)

          \(|y-2020|\ge0\forall y\in Q\)

\(\Rightarrow|x-2019|+|y-2020|+7\ge7\forall x,y\in Q\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2019=0\Rightarrow x=2019\\y-2020=0\Rightarrow x=2020\end{cases}}\)

          Vậy GTNN của S là 7 khi x = 2019; y = 2020