Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất
=> |x - 2019| + 2021 nhỏ nhất
Ta có: \(\left|x-2019\right|\ge0\)
\(\Rightarrow\left|x-2019\right|+2021\ge2021\)
Dấu "=" xảy ra khi x - 2019 = 0
=> x = 2019
\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)
Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:
$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$
$|x-2020|\geq 0$ với mọi $x$
$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$
Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$
Tức là $x=2020$
Theo bđt cosi
\(P=\left|x-2019\right|+\dfrac{2020}{\left|x-2019\right|}+2021\ge2\sqrt{\dfrac{\left|x-2019\right|.2020}{\left|x-2019\right|}}+2021=4\sqrt{505}+2021\)
Dấu ''='' xảy ra khi \(x-2019=2020\Leftrightarrow x=4039\)
anh ơi, anh tick em câu này được ko ạ, tick được thì em cảm ơn ạ
https://hoc24.vn/cau-hoi/quang-duong-tu-tinh-a-den-tinh-b-dai-950-km-vay-tren-ban-do-co-ti-le-1-1-000-000-thi-quang-duong-do-dai-la-cm.6180857381096
\(A=\left(\left|x-1\right|+\left|2020-x\right|\right)+\left(\left|x-2\right|+\left|2019-x\right|\right)+...+\left(\left|x-1009\right|+\left|1010-x\right|\right)\\ A\ge\left|x-1+2020-x\right|+\left|x-2+2019-x\right|+...+\left|x-1009+1010-x\right|\\ A\ge2019+2017+...+1=\dfrac{2020\left[\left(2019-1\right):2+1\right]}{2}=1020100\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(2020-x\right)\ge0\\...\\\left(x-1009\right)\left(1010-x\right)\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\le x\le2020\\...\\1009\le x\le1010\end{matrix}\right.\)
\(\Leftrightarrow1009\le x\le1010\)
làm nốt câu này rồi đi ngủ
\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)
Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN
Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)
Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được :
\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)
Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)
Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)
Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)
\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}\)
\(=\frac{\left|x+2019\right|+2021-1}{\left|x-2019\right|+2021}\)
\(=1-\frac{1}{\left|x-2019\right|+2021}\)
\(\ge1-\frac{1}{\left|2019-2019\right|+2021}=1-\frac{1}{2021}=\frac{2020}{2021}\)
Dấu "=" xảy ra tại \(x=2019\)
Bài giải
\(A=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)
A đạt GTNN khi \(\frac{1}{\left|x-2019\right|+2021}\) đạt GTLN \(\Leftrightarrow\text{ }\left|x-2019\right|+2021\) đạt GTNN
Mà \(\left|x-2019\right|\ge0\) Dấu " = " xảy ra khi x - 2019 = 0 => x = 2019
\(\Rightarrow\text{ }\left|x-2019\right|+2021\ge2021\)
\(\Rightarrow\text{ }\frac{1}{\left|x-2019\right|+2021}\le\frac{1}{2021}\)
\(\Rightarrow\text{ }A\ge1-\frac{1}{2021}=\frac{2020}{2021}\)
Ta có: \(|x-2019|\ge0\forall x\in Q\)
\(|y-2020|\ge0\forall y\in Q\)
\(\Rightarrow|x-2019|+|y-2020|+7\ge7\forall x,y\in Q\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2019=0\Rightarrow x=2019\\y-2020=0\Rightarrow x=2020\end{cases}}\)
Vậy GTNN của S là 7 khi x = 2019; y = 2020