Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
$C=5+(5^2+5^3)+(5^4+5^5)+.....+(5^{2022}+5^{2023})$
$=5+5^2(1+5)+5^4(1+5)+....+5^{2022}(1+5)$
$=5+(1+5)(5^2+5^4+....+5^{2022})$
$=5+6(5^2+5^4+....+5^{2022})$
$\Rightarrow C$ chia $6$ dư $5$
$\Rightarrow C\not\vdots 6$
2/
$D=(1+2+2^2)+(2^3+2^4+2^5)+....+(2^{2019}+2^{2020}+2^{2021})$
$=(1+2+2^2)+2^3(1+2+2^2)+....+2^{2019}(1+2+2^2)$
$=(1+2+2^2)(1+2^3+...+2^{2019})$
$=7(1+2^3+...+2^{2019})\vdots 7$
Ta có đpcm.
a: Ư(8)={1;2;4;8}
Ư(12)={1;2;3;4;6;12}
UC(8;12)={1;2;4}
b: B(16)={0;16;32;...}
B(24)={0;24;48;...}
BC(16,24)={0;48;96;...}
Bài 1:
a. $-27+(-154)-(-27)+54$
$=(-27)-(-27)+(-154)+54=0-154+54=0-(154-54)=0-100=-100$
b.
$-35.127+(-35).(-27)+700$
$=(-35)(127-27)+700=-35.100+700=-3500+700=-2800$
c.
$-3^4-2[(-2023)^0+(-5)^2]=-81-2(1+25)=-81-2.26=-81-52$
$=-(81+52)=-133$
Bài 2:
a. $-34-2(7-x)=-10$
$2(7-x)=-34-(-10)=-24$
$7-x=-24:2=-12$
$x=7-(-12)=19$
b.
$x=ƯC(36,54,90)$
$\Rightarrow ƯCLN(36,54,90)\vdots x$
$\Rightarrow 18\vdots x$
$\Rightarrow x\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$
Mà $x>5$ nên $x\in \left\{6; 9; 18\right\}$
Đặt A=2/3+2/6+2/12+...+2/768
=2/3(1+1/2+1/4+...+1/256)
Đặt B=1+1/2+1/4+...+1/256
=>2B=2+1+1/2+...+1/128
=>B=2-1/256=511/256
=>\(A=\dfrac{2}{3}\cdot\dfrac{511}{256}=\dfrac{511}{128\cdot3}=\dfrac{511}{384}\)
p: \(\dfrac{5}{1\cdot2}+\dfrac{5}{2\cdot3}+...+\dfrac{5}{50\cdot51}\)
\(=5\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{50\cdot51}\right)\)
\(=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\)
\(=5\cdot\left(1-\dfrac{1}{51}\right)=5\cdot\dfrac{50}{51}=\dfrac{250}{51}\)
q: \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{210}\)
\(=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{420}\)
\(=2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{420}\right)\)
\(=2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{20\cdot21}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{20}-\dfrac{1}{21}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{21}\right)=2\cdot\dfrac{19}{42}=\dfrac{19}{21}\)