Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
b: Ta có: \(B=\dfrac{15-5\sqrt{x}}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(=\dfrac{-5\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-2}=1\)
8: \(x-7\sqrt{x}+6=\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)\)
9: \(x-\sqrt{x}-20=\left(\sqrt{x}-5\right)\left(\sqrt{x}+4\right)\)
II/ Bài tập tham khảo:
Bài 4:
\(A=sin^21^0+sin^22^0+sin^23^0+...+sin^288^0+sin^289^0\)
\(A=\left(sin^21^0+sin^289^0\right)+\left(sin^22^0+sin^288^0\right)+...+\left(sin^244^0+sin^246^0\right)+sin^245^0\)
\(A=\left(sin^21^0+cos^21^0\right)+\left(sin^22^0+cos^22^0\right)+...+\left(sin^244^0+cos^244^0\right)+\left(\frac{\sqrt{2}}{2}\right)^2\)
\(A=1+1+...+1+1\)(45 số hạng tất cả)
(vì \(\sin^2\alpha+\cos^2\alpha=1\)và \(\left(\frac{\sqrt{2}}{2}\right)^2=1\)
A = 45
Bài 6:
a. \(A=[\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}(\sqrt{x}-1)}].(\sqrt{x}-1)\)
\(=\sqrt{x}+\frac{2}{\sqrt{x}}=\frac{x+2}{\sqrt{x}}\)
b. Áp dụng BĐT Cô-si cho các số dương:
$A=\sqrt{x}+\frac{2}{\sqrt{x}}\geq 2\sqrt{2}$
Vậy gtnn của $A$ là $2\sqrt{2}$. Giá trị này đạt tại $x=2$
Bài 7:
a.
\(x=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}=1\)
Khi đó: \(B=\frac{1+3}{1+8}=\frac{4}{9}\)
b. \(A=\frac{(\sqrt{x}+1)(\sqrt{x}+3)+\sqrt{x}(2\sqrt{x}-1)}{(2\sqrt{x}-1)(\sqrt{x}+3)}-\frac{x+6\sqrt{x}+2}{(2\sqrt{x}-1)(\sqrt{x}+3)}\)
\(=\frac{3x+3\sqrt{x}+3-(x+6\sqrt{x}+2)}{(\sqrt{x}+3)(2\sqrt{x}-1)}=\frac{2x-3\sqrt{x}+1}{(2\sqrt{x}-1)(\sqrt{x}+3)}\)
\(=\frac{(2\sqrt{x}-1)(\sqrt{x}-1)}{(2\sqrt{x}-1)(\sqrt{x}+3)}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\)
c.
\(P=AB=\frac{\sqrt{x}+3}{x+8}.\frac{\sqrt{x}-1}{\sqrt{x}+3}=\frac{\sqrt{x}-1}{x+8}\)
Áp dụng BĐT Cô-si:
$x+16\geq 8\sqrt{x}$
$\Rightarrow x+8\geq 8(\sqrt{x}-1)$
$\Rightarrow P\leq \frac{\sqrt{x}-1}{8(\sqrt{x}-1)}=\frac{1}{8}$
Vậy $P_{\max}=\frac{1}{8}$ khi $x=16$
3) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m^2-6\right)\)
\(=\left(2m-2\right)^2-4\left(m^2-6\right)\)
\(=4m^2-8m+4-4m^2+24\)
\(=-8m+28\)
Để phương trình có hai nghiệm phân biệt x1;x2 thì Δ>0
\(\Leftrightarrow-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{1}=2m-2\\x_1x_2=m^2-6\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-6\right)-16=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+12-16=0\)
\(\Leftrightarrow2m^2-8m=0\)
\(\Leftrightarrow2m\left(m-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(nhận\right)\\m=4\left(loại\right)\end{matrix}\right.\)
goi so doan can cat la x
ta co Rtd=R/x(do cac R bang nhau)
\(\Rightarrow3=\frac{27}{\frac{x}{x}}\Rightarrow3=\frac{27}{x^2}\Rightarrow x^2=9\Rightarrow x=3\)
vaycan cat 3 doan
Bài 3.
a. Ta có: \(CK=BK\left(gt\right)\Rightarrow OK\perp BC\)
Ta có: \(\widehat{OIC}=90^o\)
\(\widehat{OKC}=90^o\)
\(\Rightarrow\widehat{OIC}+\widehat{OKC}=90^o+90^o=180^o\)
`=>` Tứ giác CIOK nội tiếp đường tròn
b. Xét \(\Delta AID\) và \(\Delta CIB\), có:
\(\widehat{AID}=\widehat{CIB}=90^o\left(gt\right)\)
\(\widehat{ADI}=\widehat{CBI}\) ( cùng chắn \(\stackrel\frown{AC}\) )
Vậy \(\Delta AID\sim\Delta CIB\) ( g.g)
\(\Rightarrow\dfrac{IA}{IC}=\dfrac{ID}{IB}\)
\(\Leftrightarrow IC.ID=IA.IB\)
c. Kẻ \(DM\perp AC\)
Ta có: \(\widehat{ACB}=90^o\) ( góc nt chắn nửa đtròn )
`->` Tứ giác DMCK là hình chữ nhật
\(\rightarrow DK\perp BC\)
Mà \(OK\perp BC\)
\(\Rightarrow\) 3 điểm D,O,K thẳng hàng
a: Thay m=-5 vào pt, ta được:
\(x^2-x-5=0\)
\(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(-5\right)=21\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{21}}{2}\\x_2=\dfrac{1+\sqrt{21}}{2}\end{matrix}\right.\)
b: \(\Delta=\left(-1\right)^2-4\cdot1\cdot m=-4m+1\)
Để phương trình có hai nghiệm phân biệt thì -4m+1>0
=>-4m>-1
hay m<1/4
Theo đề, ta có: \(\left(m-1\right)^2=9\)
=>m-1=3 hoặc m-1=-3
=>m=4(loại) hoặc m=-2(nhận)
a, Thay m = -5 ta được
\(x^2-x-5=0\)
\(\Delta=1-4\left(-5\right)=1+20=21>0\)
Vậy pt có 2 nghiệm pb
\(x_1=\dfrac{1-\sqrt{21}}{2};x_2=\dfrac{1+\sqrt{21}}{2}\)
b, \(\Delta=1-4m\)Để pt có 2 nghiệm x1 ; x2
=> 1 - 4m >= 0 <=> m =< 1/4
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)
Thay vào ta được
\(\left(m-1\right)^2=9\Leftrightarrow\left[{}\begin{matrix}m-1=3\\m-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=4\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Uhm, bạn vui lòng tách bài ra để sớm nhận được lời giải nhơn nhé!
thế bạn giải hộ mình luôn đc không. mình đang rất là gấp