K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

Uhm, bạn vui lòng tách bài ra để sớm nhận được lời giải nhơn nhé!

26 tháng 11 2021

thế bạn giải hộ mình luôn đc không. mình đang rất là gấp

 

Bài 2: 

b: Ta có: \(B=\dfrac{15-5\sqrt{x}}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{-5\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-2}=1\)

8: \(x-7\sqrt{x}+6=\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)\)

9: \(x-\sqrt{x}-20=\left(\sqrt{x}-5\right)\left(\sqrt{x}+4\right)\)

10 tháng 11 2021

II/ Bài tập tham khảo:

Bài 4:

\(A=sin^21^0+sin^22^0+sin^23^0+...+sin^288^0+sin^289^0\)

\(A=\left(sin^21^0+sin^289^0\right)+\left(sin^22^0+sin^288^0\right)+...+\left(sin^244^0+sin^246^0\right)+sin^245^0\)

\(A=\left(sin^21^0+cos^21^0\right)+\left(sin^22^0+cos^22^0\right)+...+\left(sin^244^0+cos^244^0\right)+\left(\frac{\sqrt{2}}{2}\right)^2\)

\(A=1+1+...+1+1\)(45 số hạng tất cả)

(vì \(\sin^2\alpha+\cos^2\alpha=1\)và \(\left(\frac{\sqrt{2}}{2}\right)^2=1\)

A = 45

AH
Akai Haruma
Giáo viên
22 tháng 8 2021

Bài 6:

a. \(A=[\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{\sqrt{x}(\sqrt{x}-1)}].(\sqrt{x}-1)\)

\(=\sqrt{x}+\frac{2}{\sqrt{x}}=\frac{x+2}{\sqrt{x}}\)

b. Áp dụng BĐT Cô-si cho các số dương:

$A=\sqrt{x}+\frac{2}{\sqrt{x}}\geq 2\sqrt{2}$

Vậy gtnn của $A$ là $2\sqrt{2}$. Giá trị này đạt tại $x=2$

 

AH
Akai Haruma
Giáo viên
22 tháng 8 2021

Bài 7:

a.

\(x=\frac{1}{\sqrt{3}-1}-\frac{1}{\sqrt{3}+1}=1\)

Khi đó: \(B=\frac{1+3}{1+8}=\frac{4}{9}\)

b. \(A=\frac{(\sqrt{x}+1)(\sqrt{x}+3)+\sqrt{x}(2\sqrt{x}-1)}{(2\sqrt{x}-1)(\sqrt{x}+3)}-\frac{x+6\sqrt{x}+2}{(2\sqrt{x}-1)(\sqrt{x}+3)}\)

\(=\frac{3x+3\sqrt{x}+3-(x+6\sqrt{x}+2)}{(\sqrt{x}+3)(2\sqrt{x}-1)}=\frac{2x-3\sqrt{x}+1}{(2\sqrt{x}-1)(\sqrt{x}+3)}\)

\(=\frac{(2\sqrt{x}-1)(\sqrt{x}-1)}{(2\sqrt{x}-1)(\sqrt{x}+3)}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\)

c.

\(P=AB=\frac{\sqrt{x}+3}{x+8}.\frac{\sqrt{x}-1}{\sqrt{x}+3}=\frac{\sqrt{x}-1}{x+8}\)

Áp dụng BĐT Cô-si:

$x+16\geq 8\sqrt{x}$

$\Rightarrow x+8\geq 8(\sqrt{x}-1)$

$\Rightarrow P\leq \frac{\sqrt{x}-1}{8(\sqrt{x}-1)}=\frac{1}{8}$

Vậy $P_{\max}=\frac{1}{8}$ khi $x=16$

 

3) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m^2-6\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-6\right)\)

\(=4m^2-8m+4-4m^2+24\)

\(=-8m+28\)

Để phương trình có hai nghiệm phân biệt x1;x2 thì Δ>0

\(\Leftrightarrow-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{1}=2m-2\\x_1x_2=m^2-6\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-6\right)-16=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+12-16=0\)

\(\Leftrightarrow2m^2-8m=0\)

\(\Leftrightarrow2m\left(m-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(nhận\right)\\m=4\left(loại\right)\end{matrix}\right.\)

9 tháng 10 2018

goi so doan can cat la x 

ta co Rtd=R/x(do cac R bang nhau)

\(\Rightarrow3=\frac{27}{\frac{x}{x}}\Rightarrow3=\frac{27}{x^2}\Rightarrow x^2=9\Rightarrow x=3\)

vaycan cat 3 doan

2 tháng 3 2023

Bài 3.

a. Ta có: \(CK=BK\left(gt\right)\Rightarrow OK\perp BC\) 

Ta có: \(\widehat{OIC}=90^o\) 

           \(\widehat{OKC}=90^o\)

\(\Rightarrow\widehat{OIC}+\widehat{OKC}=90^o+90^o=180^o\)

`=>` Tứ giác CIOK nội tiếp đường tròn

b. Xét \(\Delta AID\) và \(\Delta CIB\), có:

\(\widehat{AID}=\widehat{CIB}=90^o\left(gt\right)\)

\(\widehat{ADI}=\widehat{CBI}\) ( cùng chắn \(\stackrel\frown{AC}\) )

Vậy \(\Delta AID\sim\Delta CIB\) ( g.g)

\(\Rightarrow\dfrac{IA}{IC}=\dfrac{ID}{IB}\)

\(\Leftrightarrow IC.ID=IA.IB\)

c. Kẻ \(DM\perp AC\)

Ta có: \(\widehat{ACB}=90^o\) ( góc nt chắn nửa đtròn )

`->` Tứ giác DMCK là hình chữ nhật

\(\rightarrow DK\perp BC\)

Mà \(OK\perp BC\)

\(\Rightarrow\) 3 điểm D,O,K thẳng hàng

2 tháng 3 2023

em cảm ơn ạ

 

a: Thay m=-5 vào pt, ta được:

\(x^2-x-5=0\)

\(\Delta=\left(-1\right)^2-4\cdot1\cdot\left(-5\right)=21\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{21}}{2}\\x_2=\dfrac{1+\sqrt{21}}{2}\end{matrix}\right.\)

b: \(\Delta=\left(-1\right)^2-4\cdot1\cdot m=-4m+1\)

Để phương trình có hai nghiệm phân biệt thì -4m+1>0

=>-4m>-1

hay m<1/4

Theo đề, ta có: \(\left(m-1\right)^2=9\)

=>m-1=3 hoặc m-1=-3

=>m=4(loại) hoặc m=-2(nhận)

11 tháng 2 2022

a, Thay m = -5 ta được 

\(x^2-x-5=0\)

\(\Delta=1-4\left(-5\right)=1+20=21>0\)

Vậy pt có 2 nghiệm pb 

\(x_1=\dfrac{1-\sqrt{21}}{2};x_2=\dfrac{1+\sqrt{21}}{2}\)

b, \(\Delta=1-4m\)Để pt có 2 nghiệm x1 ; x2 

=> 1 - 4m >= 0 <=> m =< 1/4 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)

Thay vào ta được 

\(\left(m-1\right)^2=9\Leftrightarrow\left[{}\begin{matrix}m-1=3\\m-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=4\left(ktm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)