K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

Bạn tách ra từng bạn một nhé!

17 tháng 10 2021

tách từng bài ra ý ạ??

21 tháng 5 2023

`(4\sqrt{6}+x)^2=8^2+(6+\sqrt{x^2+4})^2`

`<=>96+8\sqrt{6}x+x^2=64+36+12\sqrt{x^2+4}+x^2+4`

`<=>2\sqrt{6}x-2=3\sqrt{x^2+4}`    `ĐK: x >= \sqrt{6}/6`

`<=>24x^2-8\sqrt{6}x+4=9x^2+36`

`<=>15x^2-8\sqrt{6}x-32=0`

`<=>x^2-[8\sqrt{6}]/15x-32/15=0`

`<=>(x-[4\sqrt{6}]/15)^2-64/25=0`

`<=>|x-[4\sqrt{6}]/15|=8/5`

`<=>[(x=[24+4\sqrt{6}]/15 (t//m)),(x=[-24+4\sqrt{6}]/15(ko t//m)):}`

21 tháng 5 2023

Giúp em với ạ

Bài 1: 

a: Xét tứ giác NPIK có 

\(\widehat{NKP}=\widehat{NIP}\left(=90^0\right)\)

Do đó: NPIK là tứ giác nội tiếp

hay N,P,I,K cùng thuộc 1 đường tròn

b: Xét tứ giác MKHI có

\(\widehat{MKH}+\widehat{MIH}=180^0\)

Do đó: MKHI là tứ giác nội tiếp

hay M,K,H,I cùng thuộc 1 đường tròn

Bài 7: 

Ta có: \(C=\dfrac{4+\sqrt{7}}{3\sqrt{2}+\sqrt{4+\sqrt{7}}}+\dfrac{4-\sqrt{7}}{3\sqrt{2}-\sqrt{4-\sqrt{7}}}\)

\(=\dfrac{\sqrt{2}\left(4+\sqrt{7}\right)}{6+\sqrt{8+2\sqrt{7}}}+\dfrac{\sqrt{2}\left(4-\sqrt{7}\right)}{6-\sqrt{8-2\sqrt{7}}}\)

\(=\dfrac{\sqrt{2}\left(4+\sqrt{7}\right)}{7+\sqrt{7}}+\dfrac{\sqrt{2}\left(4-\sqrt{7}\right)}{7-\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\left(\sqrt{7}-1\right)\left(4+\sqrt{7}\right)}{6\sqrt{7}}+\dfrac{\sqrt{2}\left(\sqrt{7}+1\right)\left(4-\sqrt{7}\right)}{6\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\left(-3+3\sqrt{7}+3+3\sqrt{7}\right)}{6\sqrt{7}}\)

\(=\sqrt{2}\)

NV
29 tháng 6 2021

6.

Ta có:

\(A=\sqrt{20+\sqrt{20+...+\sqrt{20}}}>\sqrt{20+\sqrt{\dfrac{1}{16}}}=\dfrac{9}{2}\)

\(B=\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}>\sqrt[3]{24}=\sqrt[3]{\dfrac{192}{8}}>\sqrt[3]{\dfrac{125}{8}}=\dfrac{5}{2}\)

\(\Rightarrow A+B>\dfrac{9}{2}+\dfrac{5}{2}=7\)

\(A=\sqrt[]{20+\sqrt[]{20+...+\sqrt[]{20}}}< \sqrt[]{20+\sqrt[]{20+...+\sqrt[]{25}}}=5\)

\(B=\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}< \sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{27}}}=3\)

\(\Rightarrow A+B< 5+3=8\)

Bài 1: 

1) Ta có: \(M=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)

\(=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\)

\(=\dfrac{a-1}{\sqrt{a}}\)

2) Thay \(a=3-2\sqrt{2}\) vào M, ta được:

\(M=\dfrac{3-2\sqrt{2}-1}{\sqrt{2}-1}=\dfrac{-2\sqrt{2}+2}{\sqrt{2}-1}\)

\(=\dfrac{-2\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-2\)

Câu 2:

1: \(y=\sqrt{3}+5\)

=>\(\left(\sqrt{3}-1\right)x+4=\sqrt{3}+5\)

=>\(\left(\sqrt{3}-1\right)\cdot x=\sqrt{3}+5-4=\sqrt{3}+1\)

=>\(x=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=\dfrac{\left(\sqrt{3}+1\right)^2}{3-1}=\dfrac{4+2\sqrt{3}}{2}=2+\sqrt{3}\)

2: \(x^2-2\left(1-m\right)x-2m-5=0\)

=>\(x^2+\left(2m-2\right)x-2m-5=0\)

a: \(\Delta=\left(2m-2\right)^2-4\left(-2m-5\right)\)

\(=4m^2-8m+4+8m+20\)

\(=4m^2+24>=24>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Câu 1:

2: Thay x=2 và y=-1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}2a-\left(-1\right)=5\\b\cdot2+a\cdot\left(-1\right)=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a=5+\left(-1\right)=4\\2b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\2b=a+4=6\end{matrix}\right.\)

=>a=2 và b=3

2: Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\left(b\ne0\right)\)

Khi tăng mẫu số thêm 4 đơn vị thì phân số đó bằng 1/3 nên ta có:

\(\dfrac{a}{b+4}=\dfrac{1}{3}\)

=>3a=b+4

=>3a-b=4(1)

Khi giảm mẫu số đi 2 đơn vị thì phân số bằng với 2/3 nên ta có:

\(\dfrac{a}{b-2}=\dfrac{2}{3}\)

=>3a=2(b-2)

=>3a=2b-4

=>3a-2b=-4(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=4\\3a-2b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=8\\3a-b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=8\\3a=b+4=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=8\end{matrix}\right.\)(nhận)

Vậy: Phân số cần tìm là \(\dfrac{4}{8}\)

9 tháng 12 2023

loading...  loading...  

16 tháng 12 2021

\(C=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-\sqrt{x}\left(\sqrt{x}+2\right)+6\sqrt{x}}{x-4}.\left(x-4\right)=2\sqrt{x}\)

a: Ta có: BC⊥BA tại B

nên BC là tiếp tuyến của (A;AB)

b: Xét (A) có 

CB là tiếp tuyến

CD là tiếp tuyến

Do đó: CB=CD
hay C nằm trên đường trung trực của BD(1)

Ta có: AB=AD

nên A nằm trên đường trung trực của BD(2)

Từ (1) và (2) suy ra AC là đường trung trực của BD

hay AC\(\perp\)BD

12 tháng 1 2022

Giúp mình luôn câu c d được không:((( sắp hết h rồi mà không bt làm

8: Ta có: \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)

\(=\sqrt{5}+1-\sqrt{5}+1\)

=2