K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2020

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x\right)+\left(2m-1\right)x-2\left(2m-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x\right)+\left(2m-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2m-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\2x^2-3x+2m-1=0\left(1\right)\end{matrix}\right.\)

Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm pb khác 2

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9-8\left(2m-1\right)>0\\2.2^2-3.2+2m-1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< \frac{17}{16}\\m\ne-\frac{1}{2}\end{matrix}\right.\)

Khi đó do vai trò của 3 nghiệm như nhau, giả sử \(x_1;x_2\) là nghiệm của (1) và \(x_3=2\)

\(x_1^2+x_2^2+x_3^2=10\Leftrightarrow x_1^2+x_2^2=6\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow\left(\frac{3}{2}\right)^2-\left(2m-1\right)=6\)

\(\Rightarrow m=-\frac{11}{8}\)

19 tháng 10 2019

PT

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(x+5\right)=m\)

\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)

\(\Leftrightarrow\left(x^2+4x-1+4\right)\left(x^2+4x-1-4\right)=m\)

\(\Leftrightarrow\left(x^2+4x-1\right)^2-16=m\)

\(\Leftrightarrow\left(x^2+4x-1\right)^2=m+16\) \(\left(DK:m\ge-16\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-1=\sqrt{m+16}\left(1\right)\\x^2+4x-1=-\sqrt{m+16}\left(2\right)\end{cases}}\)

PT(1)

\(\Leftrightarrow x^2+4x-1-\sqrt{m+16}=0\)

Ta co:

\(\Delta^`=2^2-1.\left(-1-\sqrt{m+16}\right)=5+\sqrt{m+16}>0\)

\(\Rightarrow\hept{\begin{cases}x_1=-2+\sqrt{5+\sqrt{m+16}}\\x_2=-2-\sqrt{5+\sqrt{m+16}}\end{cases}}\)

PT(2)

\(\Leftrightarrow x^2+4x-1+\sqrt{m+16}=0\)

Ta lai co:

\(\Delta^`=2^2-1.\left(-1+\sqrt{m+16}\right)=5-\sqrt{m+16}\)

De PT co 4 nghiem phan biet thi PT(1) va PT(2) co 2 nghiem phan bet

Suy ra PT(2) co 2 nghiem phan biet khi 

\(5-\sqrt{m+16}>0\)

\(\Leftrightarrow m< 9\)

\(\Rightarrow\hept{\begin{cases}x_3=-2+\sqrt{5-\sqrt{m+16}}\\x_4=-2-\sqrt{5-\sqrt{m+16}}\end{cases}}\)

Ta lai co:

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_4}+\frac{1}{x_5}=\frac{x_1+x_2}{x_1x_2}+\frac{x_4+x_5}{x_4x_5}=\frac{4}{1+\sqrt{m+16}}+\frac{4}{1-\sqrt{m+16}}\text{ }=-\frac{8}{15+m}\)\(\left(DK:m\ne-15\right)\)

Ma \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

\(\Leftrightarrow-\frac{8}{m+15}=-1\)

\(\Leftrightarrow m=-7\)

Vay de PT \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\)co 4 gnhiem phan biet thoa man 

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)thi m=-7

NV
13 tháng 4 2020

\(\Delta'=\left(m+1\right)^2-\left(4m^2-2m+3\right)=-2m^2+4m-2\)

\(=-2\left(m-1\right)^2\le0\) \(\forall m\)

\(\Rightarrow\) Không tồn tại m để pt có 2 nghiệm phân biệt

Đề bài có vấn đề

5 tháng 4 2020

Bài 1:

\(x^2-2mx+m^2-m-6=0\)

Xét \(\Delta=\left(-2m\right)^2-4\left(m^2-m-6\right)=4m^2-4m^2+4m+24=4m+24>0\Rightarrow m>-6\)

Theo hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m^2-m-6\end{matrix}\right.\)

Theo bài ra:

\(\left|x1\right|+\left|x2\right|=8\)

\(\Rightarrow\left(\left|x1\right|+\left|x2\right|\right)^2=64\)

\(\Rightarrow\left(x1+x2\right)^2-2x1x2+2\left(\left|x1x2\right|\right)=64\)

\(\Leftrightarrow\left(2m\right)^2-2.\left(m^2-m-6\right)+2\left(\left|m^2-m-6\right|\right)=64\)

\(\Leftrightarrow\left(2m\right)^2=64\Leftrightarrow4m^2-64=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=4\\m=-4\end{matrix}\right.\) (tm)

18 tháng 3 2018

đen ta = (2m-1)^2 - 4(m^2-1) = 4m^2 - 4m + 1 - 4m^2 + 4 = 5-4m >= 0 => m =< 5/4

p = (x1)^2 + (x2)^2 = (x1+x2)^2 - 2x1x2 = (2m-1)^2 - 2.(m^2-1) = 4m^2 - 4m + 1 - 2m^2 + 2 = 2m^2 - 4m + 2 + 1 = 2(m-1)^2 + 1 >= 1

dấu "=" xảy ra khi m = 1 (thõa mãn =< 5/4)

mậy minP = 1 khi m = 1

4 tháng 4 2022

Phương trình 2 nghiệm phân biệt khi 

\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)

\(\Leftrightarrow m\ne-1\)

Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)

Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)

<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)

\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)

Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán 

NV
5 tháng 4 2022

\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)

\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)

\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)

\(\Leftrightarrow m\ge-\dfrac{8}{3}\)

Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)

NV
5 tháng 5 2019

\(\Delta'=\left(m+1\right)^2-m^2-2m=1\)

\(\Rightarrow\) phương trình đã cho luôn có 2 nghiệm pb

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2m\end{matrix}\right.\)

Và do \(\Delta\) đẹp nên ta suy ra luôn \(\left|x_1-x_2\right|=\left|\frac{2\sqrt{\Delta'}}{a}\right|=2\)

\(\left|\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)\right|=8\)

\(\Leftrightarrow\left|x_1-x_2\right|.\left(x_1^2+x_1x_2+x_2^2\right)=8\) (do \(x_1^2+x_1x_2+x_2^2=\left(x_1+\frac{1}{2}x_2^2\right)+\frac{3x_2^2}{4}\ge0\))

\(\Leftrightarrow2\left(\left(x_1+x_2\right)^2-x_1x_2\right)=8\)

\(\Leftrightarrow4\left(m+1\right)^2-\left(m^2+2m\right)=4\)

\(\Leftrightarrow3m^2+6m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-\frac{1}{2}\end{matrix}\right.\)

10 tháng 2 2019

nhân tung ra rồi dùng  viet