Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vận tốc cano khi dòng nước lặng là: $25-2=23$ (km/h)
Bài 2:
Đổi 1 giờ 48 phút = 1,8 giờ
Độ dài quãng đường AB: $1,8\times 25=45$ (km)
Vận tốc ngược dòng là: $25-2,5-2,5=20$ (km/h)
Cano ngược dòng từ B về A hết:
$45:20=2,25$ giờ = 2 giờ 15 phút.
Bài 1:
a.
$a^3-a^2c+a^2b-abc=a^2(a-c)+ab(a-c)$
$=(a-c)(a^2+ab)=(a-c)a(a+b)=a(a-c)(a+b)$
b.
$(x^2+1)^2-4x^2=(x^2+1)^2-(2x)^2=(x^2+1-2x)(x^2+1+2x)$
$=(x-1)^2(x+1)^2$
c.
$x^2-10x-9y^2+25=(x^2-10x+25)-9y^2$
$=(x-5)^2-(3y)^2=(x-5-3y)(x-5+3y)$
d.
$4x^2-36x+56=4(x^2-9x+14)=4(x^2-2x-7x+14)$
$=4[x(x-2)-7(x-2)]=4(x-2)(x-7)$
Bài 2:
a. $(3x+4)^2-(3x-1)(3x+1)=49$
$\Leftrightarrow (3x+4)^2-[(3x)^2-1]=49$
$\Leftrightarrow (3x+4)^2-(3x)^2=48$
$\Leftrightarrow (3x+4-3x)(3x+4+3x)=48$
$\Leftrightarrow 4(6x+4)=48$
$\Leftrightarrow 6x+4=12$
$\Leftrightarrow 6x=8$
$\Leftrightarrow x=\frac{4}{3}$
b. $x^2-4x+4=9(x-2)$
$\Leftrightarrow (x-2)^2=9(x-2)$
$\Leftrightarrow (x-2)(x-2-9)=0$
$\Leftrightarrow (x-2)(x-11)=0$
$\Leftrightarrow x-2=0$ hoặc $x-11=0$
$\Leftrightarrow x=2$ hoặc $x=11$
c.
$x^2-25=3x-15$
$\Leftrightarrow (x-5)(x+5)=3(x-5)$
$\Leftrightarrow (x-5)(x+5-3)=0$
$\Leftrightarrow (x-5)(x+2)=0$
$\Leftrightarrow x-5=0$ hoặc $x+2=0$
$\Leftrightarrow x=5$ hoặc $x=-2$
18, \(\frac{x}{2}+\frac{x^2}{8}=0\Leftrightarrow4x+x^2=0\Leftrightarrow x\left(x+4\right)=0\Leftrightarrow x=-4;x=0\)
19, \(4-x=2\left(x-4\right)^2\Leftrightarrow\left(4-x\right)-2\left(4-x\right)^2=0\)
\(\Leftrightarrow\left(4-x\right)\left[1-2\left(4-x\right)\right]=0\Leftrightarrow\left(4-x\right)\left(-7+2x\right)=0\Leftrightarrow x=4;x=\frac{7}{2}\)
20, \(\left(x^2+1\right)\left(x-2\right)+2x-4=0\Leftrightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3>0\right)=0\Leftrightarrow x=2\)
21, \(x^4-16x^2=0\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\Leftrightarrow x=0;x=\pm4\)
22, \(\left(x-5\right)^3-x+5=0\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\Leftrightarrow\left(x-5\right)\left(x-6\right)\left(x-4\right)=0\Leftrightarrow x=4;x=5;x=6\)
23, \(5\left(x-2\right)-x^2+4=0\Leftrightarrow5\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-x-2\right)=0\Leftrightarrow x=2;x=3\)
Bài 4:
\(28x^3+6x^2+12x+8=0\)
\(\Leftrightarrow28x^3+14x^2-8x^2-4x+16x+8=0\)
\(\Leftrightarrow14x^2\left(2x+1\right)-4x\left(2x+1\right)+8\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(14x^2-4x+8\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2-\dfrac{2}{7}x+\dfrac{4}{7}\right)=0\)
\(\Leftrightarrow2x+1=0\) hay \(\left(x^2-\dfrac{2}{7}x+\dfrac{4}{7}\right)=0\)
\(\Leftrightarrow x=\dfrac{-1}{2}\) hay \(x^2-2.\dfrac{1}{7}x+\dfrac{1}{49}+\dfrac{27}{49}=0\)
\(\Leftrightarrow x=\dfrac{-1}{2}\) hay \(\left(x-\dfrac{1}{7}\right)^2+\dfrac{27}{49}=0\) (vô nghiệm vì \(\left(x-\dfrac{1}{7}\right)^2+\dfrac{27}{49}\ge\dfrac{27}{49}\))
-Vậy \(S=\left\{\dfrac{-1}{2}\right\}\)
Bài 3:
a) AB//CD \(\Rightarrow\widehat{BAM}=\widehat{ACD}\) (so le trong)
\(\widehat{AMB}=\widehat{ADC}=90^0\)
\(\Rightarrow\)△ABM∼△CAD (g-g).
b) △ADC vuông tại D \(\Rightarrow AD^2+DC^2=AC^2\Rightarrow AD^2+AB^2=AC^2\Rightarrow AC=\sqrt{AD^2+AB^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)△ADC có DN phân giác \(\Rightarrow\dfrac{NA}{NC}=\dfrac{DA}{DC}\)
\(\Rightarrow\dfrac{NA}{DA}=\dfrac{NC}{DC}=\dfrac{NA+NC}{DA+DC}=\dfrac{AC}{DA+DC}\)
\(\Rightarrow NC=\dfrac{AC.DC}{DA+DC}=\dfrac{15.12}{9+12}=\dfrac{60}{7}\left(cm\right)\)
△ADC có NK//AD (cùng vuông góc với DC) \(\Rightarrow\dfrac{NK}{AD}=\dfrac{NC}{AC}\)
\(\Rightarrow NK=\dfrac{NC}{AC}.AD=\dfrac{\dfrac{60}{7}}{15}.9=\dfrac{36}{7}\left(cm\right)\)
c) △ABM∼△CAD \(\Rightarrow\dfrac{BM}{AD}=\dfrac{AM}{CD}\Rightarrow\dfrac{BM}{AM}=\dfrac{AD}{CD}\Rightarrow\dfrac{BM}{AM}=\dfrac{AN}{CN}\)
\(\Rightarrow BM.CN=AM.AN\)
△BMC∼△ABC (g-g)\(\Rightarrow\dfrac{BM}{AB}=\dfrac{BC}{AC}\Rightarrow BM=\dfrac{AB.BC}{AC}\Rightarrow\dfrac{1}{BM}=\dfrac{AC}{AB.BC}\Rightarrow\dfrac{1}{BM^2}=\dfrac{AC^2}{AB^2.BC^2}=\dfrac{AB^2+BC^2}{AB^2.BC^2}=\dfrac{1}{AB^2}+\dfrac{1}{BC^2}\)