Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì đồ thị hàm số y=ax+b vuông góc với đồ thị hàm số \(y=\dfrac{1}{3}x-1\) nên \(a\cdot\dfrac{1}{3}=-1\)
\(\Leftrightarrow a=-1:\dfrac{1}{3}=-1\cdot\dfrac{3}{1}=-3\)
Vậy: Hàm số có dạng y=-3x+b
Vì đồ thị hàm số y=-3x+b đi qua điểm A(1;2) nên
Thay x=1 và y=2 vào hàm số y=-3x+b, ta được:
\(-3\cdot1+b=2\)
\(\Leftrightarrow b-3=2\)
hay b=5
Vậy: Hàm số có dạng y=-3x+5
a)d đi qua A(1;1)=>x=1;y=1
=> 1=a+b
d đi qua B(3;-2)=>x=3;y=-2
=>-2=3a+b
Ta có hệ phương trình: \(\hept{\begin{cases}a+b=1\\3a+b=-2\end{cases}}\)
=> a=-3/2;b=5/2
Vậy (d): y=-3/2x+5/2
b)(D): x-y+1=0 => (D): y=x+1
d đi qua C(2;-2)=>x=2;y=-2
=>-2=2a+b
vì d//D=>a=1
=>-2=2+b
=>b=-4
Vậy (d): y=x-4
c) Mình ko bt làm nha, xin bạn thông cảm!!
d) d đi qua N(1;-1)=>x=1;y=-1
=>-1=a+b
vì d vuông góc với d': y=-x+3
=>a.-1=-1
=>a=1
=>b=-1
Vậy (d): y=x-1
- Thay tọa độ điểm B và C vào hàm số ta được :
\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{16}{5}\end{matrix}\right.\)
Vậy ...
b, Thay a, b vào ta được hàm số : \(y=-\dfrac{4}{5}x+\dfrac{16}{5}\)
\(\Rightarrow\tan\left(180-a\right)=\dfrac{4}{5}\)
\(\Rightarrow a=141^o21\)
Vậy ...
b: Vì (d)//y=-2x+1 nên a=-2
Vậy: (d): y=-2x+b
Thay x=0 và y=4 vào (d), ta được: b=4
Ta có : 4x - y + 1 = 0
=> \(y=4x+1\)
Ta có : y = ax + b vuông góc với y = 4x + 1
=> \(a.4=-1\)
=> \(a=-\frac{1}{4}\)
- Thay a, x, y vào hàm số ta được :
\(-1=4.-\frac{1}{4}+b\)
=> b = 0
=> a.b = -1/4 . 0 = 0
=> Đáp án B .