K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

a) \(\left\{{}\begin{matrix}2x-7>0.\\5x+1>0.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x>7.\\5x>-1.\end{matrix}\right.\) \(\left\{{}\begin{matrix}x>\dfrac{7}{2}.\\x>\dfrac{-1}{5}.\end{matrix}\right.\)

\(\Rightarrow x>\dfrac{7}{2}.\) \(\Rightarrow x\in\left(\dfrac{7}{2};+\infty\right).\)

Kết luận: Tập nghiệm của hệ bất phương trình trên là \(x\in\left(\dfrac{7}{2};+\infty\right).\)

b) \(\left\{{}\begin{matrix}\left(2x+3\right)\left(x-1\right)>0.\\7x-5< 0.\end{matrix}\right.\) \(\Leftrightarrow\text{​​}\text{​​}\)\(\left\{{}\begin{matrix}\left(2x+3\right)\left(x-1\right)>0.\left(1\right)\\x< \dfrac{5}{7}.\left(2\right)\end{matrix}\right.\)

Xét (1): 

 \(2x+3=0.\Leftrightarrow x=\dfrac{-3}{2}.\\ x-1=0.\Leftrightarrow x=1.\)

Bảng xét dấu:

\(x\)                           \(-\infty\)             \(\dfrac{-3}{2}\)                \(1\)               \(+\infty\)          

\(2x+3\)                             -          \(0\)       +          |       +

\(x-1\)                               -          |         -          \(0\)      +

\(\left(2x+3\right)\left(x-1\right)\)              +         \(0\)         -          \(0\)      +

Vậy \(\left(2x+3\right)\left(x-1\right)>0.\Leftrightarrow\dfrac{-3}{2}< x< 1.\)

Kết hợp với (2).

\(\Rightarrow\) \(\dfrac{-3}{2}< x< \dfrac{5}{7}.\)

\(\Rightarrow x\in\left(\dfrac{-3}{2};\dfrac{5}{7}\right).\)

Kết luận: Tập nghiệm của hệ bất phương trình trên là \(x\in\left(\dfrac{-3}{2};\dfrac{5}{7}\right).\)

15 tháng 4 2022

lx

15 tháng 4 2022

lx

Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

DO đó; OM là tia phân giác của góc AOB

Xét ΔOAM vuông tại A có 

\(\tan\widehat{AOM}=\dfrac{AM}{AO}=\sqrt{3}\)

nên \(\widehat{AOM}=60^0\)

=>\(\widehat{AOB}=120^0\)

14 tháng 10 2017

Ta thừa nhận định lý f(x) chia hết cho x-a thì f(a) =0 ( mình đang vội khỏi chứng minh nhé, nếu thắc mắc phiền bạn xem SGK 9 nha)

Thay 1 vào x, ta có

f(x) =14+12+a=0

2+a=0 suy ra a=-2

20 tháng 10 2021

???????

20 tháng 10 2021

simp!

30 tháng 10 2017

Hoành độ đỉnh: \(\dfrac{-b}{2a}=-\dfrac{-2}{2}=1\)

a > 0 nên đồ thị hướng lên

Vậy HS đồng biến trong khoảng (1;+\(\infty\)) -> Chọn A

28 tháng 8 2021

Mình trình bày cho dễ hiểu nha

\(sina-\sqrt{3}cosa\)   

\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)

\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)

\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)

Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)   

\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)   

Vậy Min=-2

Max=2

28 tháng 8 2021
Ăn đâu BUI đi 💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩💩
DD
24 tháng 8 2021

\(cos\alpha=\frac{1}{2}\Leftrightarrow\alpha=\frac{-\pi}{3}\)(vì \(\frac{-\pi}{2}< \alpha< 0\))

\(cot\left(\frac{\pi}{3}-\alpha\right)=cot\left(\frac{2\pi}{3}\right)=\frac{-\sqrt{3}}{3}\)

30 tháng 10 2017

Đường thẳng y = ax + b đi qua A( -1; 2) và B( 2; -3)

Nên có hpt: \(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(y=-\dfrac{5}{3}x+\dfrac{1}{3}\)

-> Chon B

30 tháng 10 2017

Câu 9: ĐKXĐ: \(3-2x\ge0\)

\(\Leftrightarrow x\le\dfrac{3}{2}\)

-> Chọn B

Câu 10: Bấm máy là ra.

14 tháng 10 2017

câu 1:

a2+b2+c2+42 = 2a+8b+10c

<=> a2-2a+1+b2 -8b+16+c2-10c+25=0

<=> (a-1)2+(b-4)2+(c-5)2=0

<=>a=1 và b=4 và c=5

=> a+b+c = 10

14 tháng 10 2017

ta có 2(a2+b2)=5ab

<=> 2a2+2b2-5ab=0

<=> 2a2-4ab-ab+2b2=0

<=> 2a(a-2b)-b(a-2b)=0

<=> (a-2b)(2a-b)=0

<=> a=2b(thỏa mãn)

hoặc b=2a( loại vì a>b)

với a=2b =>P=5b/5b=1