K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2022

31.

\(y'=4x^3+1\)

Tiếp tuyến vuông góc với \(d\) nên có hệ số góc \(k=5\)

Gọi hoành độ tiếp điểm là \(x_0\Rightarrow4x_0^3+1=5\Rightarrow x_0^3=1\)

\(\Rightarrow x_0=1\Rightarrow y_0=2\)

Phương trình: \(y=5\left(x-1\right)+2\Leftrightarrow y=5x-3\)

33.

Vận tốc của chất điểm: \(v\left(t\right)=S'\left(t\right)=5-6t\)

\(v\left(t\right)=3\Rightarrow5-6t=3\Rightarrow t=\dfrac{1}{3}\)

\(\Rightarrow S=5.\dfrac{1}{3}-3.\left(\dfrac{1}{3}\right)^2=1,33\left(m\right)\)

15 tháng 5 2022

undefined

15 tháng 5 2022

undefined

11 tháng 3 2022

theo mình thì câu trên: dưới mẫu trong căn bỏ n^2 ra làm nhân tử chung xong đặt nhân tử chung của cả mẫu là n^2 . câu dưới thì mình k biết!!

 

NV
11 tháng 3 2022

\(\lim\dfrac{-3n+2}{n-\sqrt{4n+n^2}}=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{\left(n-\sqrt{4n+n^2}\right)\left(n+\sqrt{4n+n^2}\right)}\)

\(=\lim\dfrac{\left(-3n+2\right)\left(n+\sqrt{4n+n^2}\right)}{-4n}=\lim\dfrac{n\left(-3+\dfrac{2}{n}\right)n\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4n}\)

\(=\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}\)

Do \(\lim\left(n\right)=+\infty\)

\(\lim\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=\dfrac{\left(-3+0\right)\left(1+\sqrt{0+1}\right)}{-4}=\dfrac{3}{2}>0\)

\(\Rightarrow\lim n\dfrac{\left(-3+\dfrac{2}{n}\right)\left(1+\sqrt{\dfrac{4}{n}+1}\right)}{-4}=+\infty\)

17 tháng 12 2021

a, \(u_n=u_1.q^{n-1}\)

\(\Leftrightarrow192=u_1.2^n\)

\(\Leftrightarrow u_1=\dfrac{192}{2^n}\)

\(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}\)

\(\Leftrightarrow189=\dfrac{\dfrac{192}{2^n}\left(1-2^n\right)}{1-2}\)

\(\Leftrightarrow189=192-\dfrac{192}{2^n}\)

\(\Leftrightarrow\dfrac{192}{2^n}=3\)

\(\Leftrightarrow2^n=2^6\)

\(\Rightarrow n=6\)

\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)

\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)

20 tháng 1 2023

Còn cách giải chi tiết hơn không ạ như này e chưa hiểu lắm

NV
14 tháng 4 2022

7.

Hàm có đúng 1 điểm gián đoạn khi và chỉ khi \(x^2-2\left(m+2\right)x+4=0\) có đúng 1 nghiệm

\(\Rightarrow\Delta'=\left(m+2\right)^2-4=0\)

\(\Leftrightarrow m^2+4m=0\Rightarrow\left[{}\begin{matrix}m=-4\\m=0\end{matrix}\right.\)

\(-4+0=-4\)

8.

Hàm gián đoạn khi \(x^2+2x-3=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Nên hàm đồng biến trên các khoảng \(\left(-\infty;-3\right);\left(-3;1\right);\left(1;+\infty\right)\) và các tập con của chúng

A đúng

 

20: \(\lim\limits_{x\rightarrow+\infty}x^3+2x-1=\lim\limits_{x\rightarrow+\infty}\left[x^3\left(1+\dfrac{2}{x^2}-\dfrac{1}{x^3}\right)\right]\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow+\infty}x^3=+\infty\\\lim\limits_{x\rightarrow+\infty}1+\dfrac{2}{x^2}-\dfrac{1}{x^3}=1\end{matrix}\right.\)

 

NV
14 tháng 4 2022

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp SD\) (A đúng)

\(AC\perp BD\) theo tính chất của hình vuông (2 đường chéo vuông góc) (B đúng)

\(SA\perp CD\) theo cmt (C đúng)

Do đó D sai

29 tháng 12 2021

Câu5: 

Gọi 4 chữ số đc lập lần lượt là a,b,c,d  các số chia hết cho 2 thì d phải thuộc 0;2;6

TH1: d=0 -> d có 1 cách chọn, a có 6 cách chọn, b có 5 cách chọn , c có 4 cách chọn            a×b×c×d= 6×5×4×1=120

TH2 : d là 2 hoặc 6 -> d có 2 cách chọn , a có 5 cách chọn( trừ số 0) ,  b có 5 cách chọn, c có 4 cách chọn.                          a×b×c×d= 5×5×4×2=200 

Th1+ TH2 = 120+200=320 

Đáp án c

 

 

 

 

 

 

 

 

29 tháng 12 2021

Câu 6 : có 4! Cách lập 

4! = 24 

Đáp án d   

Câu 7 :

Theo nhị thức Newton thì chỉ cần nhìn vào 2 số đầu và cuối

(a+b)⁵ thì a=⁵√243x⁵ = 3x                     b =⁵√-1=-1                           => (3x-1)⁵   đáp án D   

Câu 8: chia làm 2 trường hợp 2 nữa 1 nam hoặc 2 nam 1 nữ.

Đáp án C