Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}3.2^xlogx-12logx-2^x+4=0\left(1\right)\\5^x=m\left(2\right)\end{matrix}\right.\) và \(5^x\ge m\) (\(x>0\))
Xét (1):
\(\Leftrightarrow3logx\left(2^x-4\right)-\left(2^x-4\right)=0\)
\(\Leftrightarrow\left(3logx-1\right)\left(2^x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=\sqrt[3]{10}\end{matrix}\right.\)
\(y=5^x\) đồng biến trên R nên (2) có tối đa 1 nghiệm
Để pt đã cho có đúng 2 nghiệm phân biệt ta có các TH sau:
TH1: (2) vô nghiệm \(\Rightarrow m\le0\) (ko có số nguyên dương nào)
TH2: (2) có nghiệm (khác với 2 nghiệm của (1)), đồng thời giá trị của m khiến cho đúng 1 nghiệm của (1) nằm ngoài miền xác định
(2) có nghiệm \(\Rightarrow m>0\Rightarrow x_3=log_5m\)
Do \(\sqrt[3]{10}>2\) nên bài toán thỏa mãn khi: \(x_1< x_3< x_2\)
\(\Rightarrow2< log_5m< \sqrt[3]{10}\)
\(\Rightarrow25< m< 5^{\sqrt[3]{10}}\) (hơn 32 chút xíu)
\(\Rightarrow\) \(32-26+1\) giá trị nguyên
Chọn B.
Đặt t= 5x> 0.
+ Phương trình đã cho trở thành: t2-( m+2) t+2m-1=0 suy ra ( 2)
( với t= 2 phương trình vô nghiệm).
Do đó phương trình đã cho có nghiệm khi phương trình (2) có nghiệm t> 0 .
+ Lập bảng biến thiên của hàm số f(t) dựa vào bảng biến thiên suy ra m ≤ 0 m ≥ 4
kết hợp điều kiện m nguyên và m ∈ [0;2018] => m ∈ {0;4;5;6;...;2018}
Vậy nghiệm 2016 giá trị của m thỏa mãn yêu cầu bài toán ra
\(m\left(2^{x^2-5x+6}-1\right)-\left(2^{7-5x}-2^{1-x^2}\right)=0\)
\(\Leftrightarrow m\left(2^{x^2-5x+6}-1\right)-2^{1-x^2}\left(2^{x^2-5x+6}-1\right)=0\)
\(\Leftrightarrow\left(m-2^{1-x^2}\right)\left(2^{x^2-5x+6}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2^{1-x^2}=m\left(1\right)\\2^{x^2-5x+6}=1\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow x^2-5x+6=0\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Để pt đã cho có 4 nghiệm phân biệt thì (1) phải có 2 nghiệm phân biệt khác 2 và 3 \(\Rightarrow m\ne\dfrac{1}{8};m\ne\dfrac{1}{256}\)
Với \(0< m< 2\), lấy logarit cơ số 2 hai vế của (1) ta được:
\(1-x^2=log_2m\Leftrightarrow x^2=1-log_2m\Rightarrow x=\pm\sqrt{1-log_2m}\)
\(\Rightarrow\) với m thỏa mãn \(\left\{{}\begin{matrix}0< m< 2\\m\ne\dfrac{1}{8}\\m\ne\dfrac{1}{256}\end{matrix}\right.\) thì pt đã cho có 4 nghiệm phân biệt
\(\Rightarrow\) có vô số giá trị m thỏa mãn
Nếu đề hỏi là giá trị nguyên của m thì chỉ có duy nhất \(m=1\), mình nghĩ bạn đã ăn bớt mất chữ "nguyên" của đề bài :D
Nếu đề bài không hỏi 4 nghiệm phân biệt mà hỏi có đúng 3 nghiệm phân biệt thì điều kiện như thế nào vậy ạ?