K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

Ta có : \(sd\widebat{AB}=2.sd\widehat{ADB}=2.15^o=30^o\)  (  sd cung bằng hai lần góc nội tiếp chắn cung đó ) 

         : \(sd\widebat{CD}=2.\widehat{DBC}=2.30^o=60^o\)       ( sd cũng bằng hai lần góc nội tiếp chắn cung đó ) 

        Ta co :     \(sd\widebat{AD}\)+  \(sd\widebat{BC}\)+\(sd\widebat{AB}\)\(sd\widebat{CD}\) \(=360^o\) 

            =>      \(sd\widebat{AD}+sd\widebat{BC}=360^o-\left(sd\widebat{AB}+sd\widebat{CD}\right)\)         

                                                        \(=360^o-\left(30^o+60^o\right)=270^o\)

Ta có : \(sd\widehat{BIC}=\frac{1}{2}\left(sd\widebat{AD}+sd\widebat{BC}\right)=\frac{1}{2}.270^o=135^o\)( góc có đỉnh ở bên trong đường trong bằng nửa tổng số đo hai cung bị chắn )

7 tháng 2 2020

a, xét (O) có gBAD nội tiếp đường tròn 

=>gBAD=90độ=> EA vuông góc FD

gBCD nội tiếp đường tròn 

=>gBCD=90độ => FC vuông góc DE

xét tgDEF có EA là đường cao

                     FC là đương cao

                    EA cắt FC tại B

=> B là trực tâm của tg

=>DB là đường cao

=> DB vuông góc EF

b,xét tgABF và tgCBE có gBAF=gBCE = 90độ

                                        gABF=gCBE (hai góc đối đỉnh)

=> tgABF ~ tgCBE (g.g)

=> BA/BC= BF/BE

=>BA.BE=BC.BF

c, bn xem lại giùm mk điểm H là điểm nào

17 tháng 7 2020

A B C D I

a. Gọi M là trung điểm của AC

Tam giác ABC vuông tại B có BM là đường trung tuyến nên:

 \(BM=\left(\frac{1}{2}\right).AC\)(tính chất tam giác vuông)

Tam giác ACD vuông tại D có DM là đường trung tuyến nên:

\(DM=\left(\frac{1}{2}\right).AC\) (tính chất tam giác vuông)

Suy ra: MA = MB = MC = MD

Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn tâm M bán kính bằng \(\left(\frac{1}{2}\right).AC\)

b. Trong đường tròn tâm M ta có BD là dây cung không đi qua tâm, AC là đường kính nên: BD < AC

AC = BD khi và chỉ khi BD là đường kính. Khi đó tứ giác ABCD là hình chữ nhật