Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(sd\widebat{AB}=2.sd\widehat{ADB}=2.15^o=30^o\) ( sd cung bằng hai lần góc nội tiếp chắn cung đó )
: \(sd\widebat{CD}=2.\widehat{DBC}=2.30^o=60^o\) ( sd cũng bằng hai lần góc nội tiếp chắn cung đó )
Ta co : \(sd\widebat{AD}\)+ \(sd\widebat{BC}\)+\(sd\widebat{AB}\)+ \(sd\widebat{CD}\) \(=360^o\)
=> \(sd\widebat{AD}+sd\widebat{BC}=360^o-\left(sd\widebat{AB}+sd\widebat{CD}\right)\)
\(=360^o-\left(30^o+60^o\right)=270^o\)
Ta có : \(sd\widehat{BIC}=\frac{1}{2}\left(sd\widebat{AD}+sd\widebat{BC}\right)=\frac{1}{2}.270^o=135^o\)( góc có đỉnh ở bên trong đường trong bằng nửa tổng số đo hai cung bị chắn )
a, xét (O) có gBAD nội tiếp đường tròn
=>gBAD=90độ=> EA vuông góc FD
gBCD nội tiếp đường tròn
=>gBCD=90độ => FC vuông góc DE
xét tgDEF có EA là đường cao
FC là đương cao
EA cắt FC tại B
=> B là trực tâm của tg
=>DB là đường cao
=> DB vuông góc EF
b,xét tgABF và tgCBE có gBAF=gBCE = 90độ
gABF=gCBE (hai góc đối đỉnh)
=> tgABF ~ tgCBE (g.g)
=> BA/BC= BF/BE
=>BA.BE=BC.BF
c, bn xem lại giùm mk điểm H là điểm nào
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2\)=\(AB^2+AC^2\)
⇔\(BC^2\)= 52 + 122 =169
hay BC = 13cm
Ta có: ΔABC vuông tại A
nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC
hay R = \(\dfrac{BC}{2}\)= \(\dfrac{13}{2}\) =6.5(cm)