K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

a: \(\left\{{}\begin{matrix}3x+6y=4\\x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6y=4\\3x+12y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-6y=-2\\x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

11 tháng 11 2021

a: \(\left\{{}\begin{matrix}3x+6y=4\\x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Bài 1: 

c: Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là 

x1=1; \(x2=\dfrac{c}{a}=\dfrac{3\sqrt{2}+1}{1-\sqrt{2}}\)

11 tháng 11 2021

a: \(\Leftrightarrow\left\{{}\begin{matrix}3x+6y=4\\x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6y=4\\3x+12y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6y=-2\\x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=2-4y=2-4\cdot\dfrac{1}{3}=2-\dfrac{4}{3}=\dfrac{2}{3}\end{matrix}\right.\)

Bài 3: 

a: Thay x=4 vào A, ta được:

\(A=\dfrac{2\cdot4}{4-9}=\dfrac{8}{-5}=-\dfrac{8}{5}\)

b: Ta có: \(B=\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{5}{\sqrt{x}+3}+\dfrac{2x+12}{9-x}\)

\(=\dfrac{2x+6\sqrt{x}-5\sqrt{x}+15-2x-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{1}{\sqrt{x}-3}\)

12 tháng 11 2021

câu d tìm ra x,y là bao nhiêu

12 tháng 11 2021

a: \(\left\{{}\begin{matrix}3x+6y=4\\x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+6y=4\\3x+12y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=2-\dfrac{4}{3}=\dfrac{2}{3}\end{matrix}\right.\)

e:

\(E=\left(\dfrac{\sqrt{15}-\sqrt{20}}{2-\sqrt{3}}+\dfrac{\sqrt{21}-\sqrt{7}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)

\(=\left(-\dfrac{\sqrt{5}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}-\dfrac{\sqrt{7}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\dfrac{\sqrt{7}-\sqrt{5}}{1}\)

\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)

=-2

f: \(F=\sqrt{3}+1+2-\sqrt{3}=3\)

bài 1: 

\(\left\{{}\begin{matrix}x+y=57\\4x-2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+4y=228\\4x-2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6y=234\\x+y=57\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=39\\x=18\end{matrix}\right.\)