K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:

$(O), (O')$ tiếp xúc ngoài tại $A$ thì $O,A,O'$ thẳng hàng.

$OM\perp MN, O'N\perp MN$ (do $MN$ là ttc)

$\Rightarrow MNO'O$ là hình thang 

$\Rightarrow \widehat{NO'A}+\widehat{MOA}=180^0$ (2 góc trong cùng phía).

Lại có:

Theo tính chất tiếp tuyến, góc thì:

$\widehat{AMN}= \frac{1}{2}\widehat{MOA}$

$\widehat{ANM}=\frac{1}{2}\widehat{NO'A}$

$\Rightarrow \widehat{AMN}+\widehat{ANM}=\frac{1}{2}(\widehat{MOA}+\widehat{NO'A})$

$=\frac{1}{2}.180^0=90^0$

$\Rightarrow \widehat{MAN}=90^0$

b. Từ $A$ kẻ tiếp tuyến $AT$ chung của $(O), (O')$

Theo tính chất 2 tt cắt nhau thì:

$AT=MT=TN$

$\Rightarrow MN=MT+TN= 2AT$

Cũng theo tính chất 2 tiếp tuyến cắt nhau thì $TO, TO'$ lần lượt là phân giác $\widehat{MTA}, \widehat{NTA}$

Mà $\widehat{MTA}+\widehat{NTA}=180^0$ nên $TO\perp TO'$

Tam giác $TOO'$ vuông có đường cao $TA$, áp dụng HTL:

$TA^2=OA.O'A=9.4=36$

$\Rightarrow TA=6$

$MN=2TA=2.6=12$ (cm)

 

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Hình vẽ:

24 tháng 12 2023

a: Gọi AH là tiếp tuyến chung của hai đường tròn (O) và (O'), H∈MN

Xét (O) có

HM,HA là các tiếp tuyến

Do đó: HM=HA và HO là phân giác của góc MHA

Xét (O') có

HA,HN là các tiếp tuyến

Do đó: HA=HN và HO' là phân giác của góc AHN

Ta có: HM=HA

HN=HA

Do đó: HM=HN

=>H là trung điểm của MN

Xét ΔAMN có

AH là đường trung tuyến

\(AH=\dfrac{MN}{2}\)

Do đó: ΔAMN vuông tại A

=>\(\widehat{MAN}=90^0\)

b: HO là phân giác của góc MHA

=>\(\widehat{MHA}=2\cdot\widehat{OHA}\)

HO' là phân giác của góc AHN

=>\(\widehat{AHN}=2\cdot\widehat{AHO'}\)

Ta có: \(\widehat{MHA}+\widehat{NHA}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{OHA}+\widehat{O'AH}\right)=180^0\)

=>\(2\cdot\widehat{OHO'}=180^0\)

=>\(\widehat{OHO'}=90^0\)

Xét ΔHO'O vuông tại H có HA là đường cao

nên \(HA^2=OA\cdot O'A\)

=>\(HA^2=9\cdot4=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

MN=2*HA

=>MN=2*6=12(cm)

7 tháng 10 2021

giúp mình vs

 

6 tháng 2 2017

ΔOIO' vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:

    IA2 = AO.AO' = 9.4 = 36

=> IA = 6 (cm)

Vậy BC = 2.IA = 2.6 = 12 (cm)

a: Ta có:(O) và (O') tiếp xúc ngoài tại A

=>A nằm giữa O và O'

=>B,O,A,O',C thẳng hàng

=>BA và CA lần lượt là đường kính của (O) và (O')

Kẻ tiếp tuyến chung AI của (O) và (O'), I\(\in\)DE
Xét (O) có

ID,IA là các tiếp tuyến

Do đó: ID=IA

Xét (O') có

IA,IE là các tiếp tuyến

Do đó: IA=IE

Ta có: ID=IA

IA=IE

Do đó: ID=IE

=>I là trung điểm của DE

Xét ΔADE có

AI là đường trung tuyến

AI=1/2DE

Do đó: ΔADE vuông tại A

=>\(\widehat{DAE}=90^0\)

b: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó: ΔADB vuông tại D

=>AD\(\perp\)MB tại D

Xét (O') có

ΔAEC nội tiếp

AC là đường kính

Do đó: ΔAEC vuông tại E

=>AE\(\perp\)MC tại E

Xét tứ giác MDAE có \(\widehat{MDA}=\widehat{MEA}=\widehat{DAE}=90^0\)

nên MDAE là hình chữ nhật

c: ta có: MDAE là hình chữ nhật

=>MA cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của MA

=>MA\(\perp\)BC tại A

=>MA là tiếp tuyến chung của (O) và (O')

1 tháng 10 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC.

Để học tốt Toán 9 | Giải bài tập Toán 9

b) Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên:

Để học tốt Toán 9 | Giải bài tập Toán 9

c) ΔOIO' vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:

    IA2 = AO.AO' = 9.4 = 36

=> IA = 6 (cm)

Vậy BC = 2.IA = 2.6 = 12 (cm)