K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 11 2021

1.

\(\sqrt{2x+1}=x+2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1\ge0\\2x+1=\left(x+2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\2x+1=x^2+4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x^2+2x+3=0\left(vn\right)\end{matrix}\right.\)

Phương trình đã cho vô nghiệm

NV
24 tháng 11 2021

2.

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

C1:

\(x^2-4x+21=6\sqrt{2x+3}\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(2x+3-6\sqrt{2x+3}+9\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(\sqrt{2x+3}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\\sqrt{2x+3}-3=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

C2:

\(x^2-4x+21=2.3.\sqrt{2x+3}\)

\(\Rightarrow x^2-4x+21\le3^2+2x+3\)

\(\Rightarrow x^2-6x+9\le0\)

\(\Rightarrow\left(x-3\right)^2\le0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)