K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2021

Câu 2:

a) Điều kiện: \(x\ne-1\)

BPT tương đương:

\(\frac{\left(x+1\right)^2\left(\sqrt{x^2+2x+2}+1\right)}{x^2+2x+1}\ge4+2x\)

\(\Leftrightarrow\sqrt{x^2+2x+2}\ge3+2x\)

\(\Leftrightarrow3+2x< 0\left(h\right)\hept{\begin{cases}3+2x\ge0\\x^2+2x+2\ge9+12x+4x^2\end{cases}}\)

\(\Leftrightarrow x< -\frac{3}{2}\left(h\right)\hept{\begin{cases}x\ge-\frac{3}{2}\\-\frac{7}{3}\le x\le-1\end{cases}}\Leftrightarrow x\le-1\)

Kết hợp ĐK suy ra \(S_a=\left(-\infty;-1\right)\)

b) Hệ tương đương:

\(\hept{\begin{cases}\left(x^2+1\right)=y\left(x+y+2\right)\left(1\right)\\\left(x^2+1\right)\left(x+y-2\right)=5y\left(2\right)\end{cases}}\)

Ta thấy VP(1) = VT (1) = x2 + 1 khác 0, vậy thì chia VT(2) và VP(2) cho VT(1) và VP (1), ta được:

\(x+y-2=\frac{5}{x+y+2}\Leftrightarrow\left(x+y\right)^2=9\Leftrightarrow\orbr{\begin{cases}x+y=3\\x+y=-3\end{cases}}\)

+) Nếu \(y=3-x\) thì (1) trở thành:

\(x^2+5x-14=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=-7\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x;y\right)=\left(2;1\right)\\\left(x;y\right)=\left(-7;10\right)\end{cases}}\)

+) Nếu \(y=-3-x\) thì (1) trở thành:

\(x^2-x-2=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}\left(x;y\right)=\left(-1;-2\right)\\\left(x;y\right)=\left(2;-5\right)\end{cases}}\)

Vậy \(S_b=\left\{\left(2;1\right);\left(-7;10\right);\left(-1;-2\right);\left(2;-5\right)\right\}.\)

16 tháng 5 2021

TH 4 bạn nữ hoặc 5 bạn nữ đứng liền nhau: 

Coi nhóm 4 bạn nữ là X, số cách sắp xếp nhóm X là: \(4!\)(cách)

Sắp xếp X, 1 bạn nữ còn lại và 4 bạn nam có:  \(6!\)(cách)

Xếp ngẫu nhiên 9 bạn có: \(9!\)(cách)

Vậy xác suất để không quá 3 bạn nữ đứng liền nhau là: \(\frac{9!-4!.6!}{9!}=\frac{20}{21}\)

18 tháng 12 2022

Có: `-C_2021 ^0 +C_2021 ^1 -C_2021 ^2 +....+C_2021 ^2019-C_2021 ^2020 -C_2021 ^2021 =-1-1=-2`

Mà `C_2021 ^0 +C_2021 ^1 +C_2021 ^2 +....+C_2021 ^2019 +C_2021 ^2020 +C_2021 ^2021 =2^2021`

   `=>2(C_2021 ^1 + C_2021 ^3 +C_2021 ^5 +...+C_2021 ^2017 + C_2021 ^2019 )=-2+2^2021`

 `=>C_2021 ^1 + C_2021 ^3 +...+C_2021 ^2017 + C_2021 ^2019 =-1+2^2020`

25 tháng 8 2021

Câu 4: D

Câu 5 : D

Câu 6 : A

\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)

\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)

20 tháng 1 2023

Còn cách giải chi tiết hơn không ạ như này e chưa hiểu lắm

1: (SBD) và (SBC) cùng vuông góc (ABCD)

=>SB vuông góc BC và SB vuông góc AB

=>ΔSAB vuông tại B, ΔSBC vuông tại B

CD vuông góc SB

CD vuông góc BC

=>CD vuông góc (SBC)

=>CD vuông góc CS

=>ΔCSD vuông tại C

AD vuông góc BD

=>AD vuông góc SB

=>AD vuông góc (SBD)

=>AD vuông góc SD
=>ΔSDA vuông tại D

b: BCDE là hình vuông

=>CE vuông góc BD

mà CE vuông góc SB

nên CE vuông (SBD)

=>(SCE) vuông góc (SBD)

3: Kẻ BM//CE(M thuộc CD)

CE vuông góc SD

=>BM vuông góc SD

Kẻ MP vuông góc SD cắt SC tại N

=>BN vuông góc SD

Xét (SCE) kẻ NQ'//CE(Q' thuộc SE)

=>NQ' vuông góc SD

Kẻ BQ' cắt SA tại F

=>Thiết diện cần tìm là BNPF

NV
20 tháng 12 2022

Không gian mẫu: \(C_{100}^5\)

Trong 100 số từ 1 tới 100 có 50 số chẵn và 50 số lẻ

Để tổng 5 số là 1 số chẵn ta có các trường hợp: (5 số đều chẵn), (1 số chẵn 4 số lẻ), (3 số chẵn 2 số lẻ)

\(\Rightarrow C_{50}^5+C_{50}^1C_{50}^4+C_{50}^3C_{50}^2\) trường hợp thỏa mãn

Xác suất: \(P=\dfrac{C_{50}^5+C_{50}^1C_{50}^4+C_{50}^3C_{50}^2}{C_{100}^5}=...\)

21 tháng 11 2023

A B C D E F M N O I K

Câu 7:

Xét hình bình hành ABCD, gọi O là giao của AC và BD

\(OB=OD=\dfrac{BD}{2}\Rightarrow BD=2OB\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

\(BN=\dfrac{1}{3}BD\left(gt\right)\Rightarrow BN=\dfrac{1}{3}.2OB=\dfrac{2}{3}OB\) 

Xét hbh ABEF, gọi I là giao của AE và BF ta có

\(IA=IE=\dfrac{AE}{2}\Rightarrow AE=2IA\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

\(AM=\dfrac{1}{3}AE\left(gt\right)\Rightarrow AM=\dfrac{1}{3}.2IA=\dfrac{2}{3}IA\) (1)

Xét tg ABF có

\(IB=IF\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)  => IA là trung tuyến của tg ABF (2)

Từ (1) và (2) => M là trọng tâm của tg ABF

Gọi K là giao của BM với AF => BK là trung tuyến của tg ABF

\(\Rightarrow BM=\dfrac{2}{3}BK\)

Xét tg BOK có

\(BN=\dfrac{2}{3}OB\left(cmt\right)\Rightarrow\dfrac{BN}{OB}=\dfrac{2}{3}\)

\(BM=\dfrac{2}{3}BK\left(cmt\right)\Rightarrow\dfrac{BM}{BK}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{BN}{OB}=\dfrac{BM}{BK}=\dfrac{2}{3}\) => MN//OK (Talet đảo trong tam giác) (3)

Xét tg ACF có

BK là trung tuyến của tg ABF (cmt) => KA=KF

Ta có

OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> OK là đường trung bình của tg ACF => OK//CF (4)

Từ (3) và (4) => MN//CF

mà \(CF\in\left(DCEF\right)\)

=> MN//(DCEF)

 

 

 

NV
18 tháng 8 2021

MN là đường trung bình tam giác SAB \(\Rightarrow\) MN song song và bằng 1 nửa AB

Gọi P là trung điểm AD \(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow P\in\left(MNQ\right)\)

\(\Rightarrow\) MNQP là thiết diện của chóp và (MNQ)

Do MN song song PQ \(\Rightarrow\) MNQP là hình thang

Lại có M, P là trung điểm SA, AD \(\Rightarrow MP=\dfrac{1}{2}SD\)

Tương tự \(NQ=\dfrac{1}{2}SC\Rightarrow MP=NQ=\dfrac{b\sqrt{3}}{2}\)

\(\Rightarrow\) Thiết diện là hình thang cân

\(PQ=AB=a\) ; \(MN=\dfrac{1}{2}PQ=\dfrac{a}{2}\)

Kẻ \(MH\perp PQ\Rightarrow PH=\dfrac{PQ-MN}{2}=\dfrac{a}{4}\)

\(\Rightarrow MH=\sqrt{MP^2-PH^2}=\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

\(S=\dfrac{1}{2}\left(MN+PQ\right).MH=\dfrac{3a}{4}.\sqrt{\dfrac{3b^2}{4}-\dfrac{a^2}{16}}\)

NV
18 tháng 8 2021

undefined

1 tháng 3 2022

Tham khảo:

undefinedundefined

CHÚC BẠN HỌC TỐT NHAbanh

NV
1 tháng 3 2022

9.

Gọi D là trung điểm BC \(\Rightarrow AD\perp BC\) (do tam giác ABC đều)

Mặt khác \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAD\right)\)

Mà BC là giao tuyến (SAB) và (SBC)

\(\Rightarrow\widehat{SDA}\) là góc giữa (ABC) và (SBC)

\(AD=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

\(\Rightarrow tan\widehat{SDA}=\dfrac{SA}{AD}=\dfrac{1}{\sqrt{3}}\)

\(\Rightarrow\widehat{SDA}=30^0\)

b.

Câu b nhìn không rõ, đề yêu cầu tính diện tích tam giác SBC đúng không nhỉ?

Từ câu a ta có \(BC\perp\left(SAD\right)\Rightarrow SD\perp BC\)

Pitago tam giác SAD: \(SD=\sqrt{SA^2+AD^2}=a\)

\(\Rightarrow S_{\Delta SBC}=\dfrac{1}{2}SD.BC=\dfrac{a^2}{2}\)