K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a: ΔADB vuông tại D

=>BD<AB

ΔACE vuông tại E

=>CE<AC

Ta có: BD<AB

CE<AC

Do đó: BD+CE<AB+AC

b: ΔBDC vuông tại D

=>BD<BC

ΔBEC vuông tại E

=>CE<BC

Ta có: BD<BC

CE<BC

Do đó: \(BD+CE< BC+BC=2BC\)

=>\(BC>\dfrac{BD+CE}{2}\)

22 tháng 1

🤔🤨

Bài 1:

1: xx'⊥AD

yy'⊥AD

Do đó: xx'//yy'

2:

Cách 1:

xx'//yy'

=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)

=>\(\hat{C_1}=70^0\)

Cách 2:

ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)

=>\(\hat{xBC}=180^0-70^0=110^0\)

Ta có: xx'//yy'

=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{C_1}=180^0-110^0=70^0\)

Bài 2:

a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên mm'//nn'

b: Cách 1:

ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)

=>\(\hat{mAD}=180^0-70^0=110^0\)

Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)

=>\(\hat{D_1}=110^0\)

Cách 2:

Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)

\(\hat{xAm}=70^0\)

nên \(\hat{BAD}=70^0\)

Ta có: AB//CD

=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)

=>\(\hat{D_1}=180^0-70^0=110^0\)

Bài 2:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

ta có: BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-125^0=55^0\)

Ta có: BD//Cz

=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)

=>\(\hat{DBC}=180^0-130^0=50^0\)

Ta có: tia BD nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)

=>\(\hat{ABC}=55^0+50^0=105^0\)

Bài 3:

Ax//yy'

=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)

=>\(\hat{yBA}=50^0\)

Cz//yy'

=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)

=>\(\hat{yBC}=40^0\)

Ta có: tia By nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)

Bài 4:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-110^0=70^0\)

ta có; tia BD nằm giữa hai tia BA và BC

=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)

=>\(\hat{DBC}=100^0-70^0=30^0\)

Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//Cz

Ta có: BD//Ax

BD//Cz

Do đó: Ax//Cz



a: a//b

=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)

\(\hat{A_1}=65^0\)

nên \(\hat{B_3}=65^0\)

b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)

=>\(\hat{B_2}=180^0-65^0=115^0\)

11 tháng 8

Giải:

a; \(\hat{A_1}\) = \(65^0\) (gt)

\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)

\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)

b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)

\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)

\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)

Vậy a; \(\hat{B}_3\) = 65\(^0\)

b; \(\hat{B_2}\) = 115\(^0\)







8 giờ trước (20:45)

Ta có: \(x+120^0=180^0\) (hai góc kề bù)

=>\(x=180^0-120^0=60^0\)

Ta có: x=y (hai góc đối đỉnh)

\(x=60^0\)

nên \(y=60^0\)

Ta có: \(z+60^0=180^0\) (hai góc kề bù)

=>\(z=180^0-60^0=120^0\)

8 giờ trước (20:45)

x = 60\(^0\) (hai góc đồng vị)

x = y = 60\(^0\) (hai góc đối đỉnh)

z = 120\(^0\) (slt)

t = 60\(^0\) (hai góc đối đỉnh)



8 giờ trước (20:56)

Gọi BM là tia đối của tia By

Ta có: \(\hat{ABy}+\hat{ABM}=180^0\) (hai góc kề bù)

=>\(\hat{ABM}=180^0-120^0=60^0\)

Ta có: tia BM nằm giữa hai tia BA và BC

=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)

=>\(\hat{CBM}=90^0-60^0=30^0\)

Ta có: \(\hat{xAm}=\hat{ABM}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị đồng vị

nên Ax//BM

=>Ax//By

Ta có: \(\hat{CBM}+\hat{BCz}=30^0+150^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên By//Cz

Ta có: Ax//By

By//Cz

Do đó: Ax//By//Cz

8 giờ trước (20:54)

Bài 4: Gọi BM là tia đối của tia Bb

Ta có: \(\hat{ABM}+\hat{ABb}=180^0\) (hai góc kề bù)

=>\(\hat{ABM}=180^0-120^0=60^0\)

Ta có: tia BM nằm giữa hai tia BA và BC

=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)

=>\(\hat{CBM}=80^0-60^0=20^0\)

ta có: \(\hat{ABM}+\hat{A}=60^0+120^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên a//b

Ta có: \(\hat{CBM}+\hat{C}=20^0+160^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên b//c

Ta có: a//b

b//c

Do đó: a//c

Bài 3:

Ta có: \(\hat{A_1}=\hat{B_1}\left(=110^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên a//b

Ta có: \(\hat{C_1}=\hat{C_2}\) (hai góc đối đỉnh)

\(\hat{C_2}=110^0\)

nên \(\hat{C_1}=110^0\)

ta có: \(\hat{C_1}=\hat{B_1}\left(=110^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên b//c

Ta có: a//b

b//c

Do đó: a//c