K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(N\in SB\subset\left(SBC\right)\)

\(N\in\left(NAD\right)\)

Do đó: \(N\in\left(SBC\right)\cap\left(NAD\right)\)

Xét (SBC) và (NAD) có

\(N\in\left(SBC\right)\cap\left(NAD\right)\)

BC//AD

Do đó: (SBC) giao (NAD)=xy, xy đi qua N và xy//BC//AD

b: Trong mp(ABCD), Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\left(1\right)\)

\(S\in SA\subset\left(SAC\right)\)

\(S\in SB\subset\left(SBD\right)\)

Do đó: \(S\in\left(SAC\right)\cap\left(SBD\right)\left(2\right)\)

Từ (1) và (2) suy ra (SAC) giao (SBD)=SO

c: Chọn mp(SBC) có chứa NK

\(SC\subset\left(SBC\right)\)

\(SC\subset\left(SCA\right)\)

Do đó: \(\left(SBC\right)\cap\left(SCA\right)=SC\)

Gọi E là giao điểm của NK với SC

=>E là giao điểm của NK với mp(SAC)

d: Chọn mp(SBD) có chứa DN

Ta có: (SBD) giao (SAC)=SO(cmt)

nên ta sẽ gọi F là giao điểm của SO với DN

=>F là giao điểm của ND với mp(SAC)

e: Xét ΔSAB có

M,N lần lượt là trung điểm của SA,SB

=>MN là đường trung bình của ΔSAB

=>MN//AB và \(MN=\dfrac{AB}{2}\)

MN//AB

AB//CD

Do đó: MN//CD

Xét tứ giác MNCD có MN//CD

nên MNCD là hình thang

 

NV
19 tháng 4 2022

Gọi H là trung điểm AB, có lẽ từ 2 câu trên ta đã phải chứng minh được \(SH\perp\left(ABCD\right)\)

Do \(\left\{{}\begin{matrix}DM\cap\left(SAC\right)=S\\MS=\dfrac{1}{2}DS\end{matrix}\right.\) \(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)\)

Gọi E là giao điểm AC và DH

Talet: \(\dfrac{HE}{DE}=\dfrac{AH}{DC}=\dfrac{1}{2}\Rightarrow HE=\dfrac{1}{2}DE\)

\(\left\{{}\begin{matrix}DH\cap\left(SAC\right)=E\\HE=\dfrac{1}{2}DE\end{matrix}\right.\) \(\Rightarrow D\left(H;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)=d\left(M;\left(SAC\right)\right)\)

Từ H kẻ HF vuông góc AC (F thuộc AC), từ H kẻ \(HK\perp SF\)

\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H;\left(SAC\right)\right)\)

ABCD là hình vuông \(\Rightarrow\widehat{HAF}=45^0\Rightarrow HF=AH.sin45^0=\dfrac{a\sqrt{2}}{4}\)

\(SH=\dfrac{a\sqrt{3}}{2}\), hệ thức lượng:

\(HK=\dfrac{SH.HF}{\sqrt{SH^2+HF^2}}=\dfrac{a\sqrt{21}}{14}\)

\(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{a\sqrt{21}}{14}\)

NV
19 tháng 4 2022

undefined

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

x

\( - \pi \)

\( - \frac{{2\pi }}{3}\)

\[ - \frac{\pi }{2}\]

\( - \frac{\pi }{3}\)

0

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\pi \)

\(y = \cos x\)

-1

\( - \frac{1}{2}\)

0

\(\frac{1}{2}\)

1

\(\frac{1}{2}\)

0

\( - \frac{1}{2}\)

-1

 

b) Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm \(\left( {x;\cos x} \right)\) với \(x \in \left[ { - \pi ;\pi } \right]\) và nối lại ta được đồ thị hàm số \(y = \cos x\) trên đoạn \(x \in \left[ { - \pi ;\pi } \right]\) (Hình 27)

 

c) Làm tương tự như trên đối với các đoạn \(\left[ { - 3\pi ; - \pi } \right]\), \(\left[ {\pi ;3\pi } \right]\),...ta có đồ thị hàm số \(y = \cos x\)trên R được biểu diễn ở Hình 28.

 

22 tháng 9 2023

Tham khảo:

Mẫu a, b là mẫu số liệu ghép nhóm.

a)

- Có 5 sinh viên chi dưới 50  nghìn đồng cho việc thanh toán cước điện thoại trong tháng.

- Có 12 sinh viên chi từ 50 đến dưới 100  nghìn đồng cho việc thanh toán cước điện thoại trong tháng.

- Có 23 sinh viên chi từ 100 đến dưới 150  nghìn đồng cho việc thanh toán cước điện thoại trong tháng.

- Có 17 sinh viên chi từ 150 đến dưới 200  nghìn đồng cho việc thanh toán cước điện thoại trong tháng.

- Có 3 sinh viên chi từ 200 đến dưới 250  nghìn đồng cho việc thanh toán cước điện thoại trong tháng.

Như vậy, đa số sinh viên chi từ 100 đến dưới 150 nghìn đồng mỗi tháng cho cước điện thoại và có ít sinh viên chi trên 200 nghìn đồng cho cước điện thoại mỗi tháng.

b)

- Có 7 ngày có nhiệt độ từ  đến dưới.

- Có 15 ngày có nhiệt độ từ  đến dưới.  

- Có 12 ngày có nhiệt độ từ  đến dưới.  

- Có 6 ngày có nhiệt độ từ đến dưới. 

9 tháng 1 2024

11 tháng 4 2024

loading... loading... 

NV
19 tháng 4 2022

Tức là câu 2, 3 của bài hình không gian đúng không em?

19 tháng 4 2022

Đúng rồi ạ , Thầy giúp em với ạ !

31 tháng 10 2016

giúp mình với !!!!

 

23 tháng 6 2016

bài này dễ thôi bạn

thay x= x+ k6pi vào hàm số y=f(x)= sin\(\frac{x}{3}\) ta dc

 sin\(\frac{x+k6pi}{3}\) =sin\(\frac{x}{3}+k2pi\) ( vì k2pi  "số chẵn lần của π" nên có thể bỏ được)

suy ra sin\(\frac{x}{3}\) =sin\(\frac{x}{3}\) =f(x)  ( dpcm)

30 tháng 8 2017

Gọi \(\overline{abcde}\)là số cần tìm.

\(\overline{abcde}\)là số chẵn nên \(e\in\left\{0;2;4;6;8\right\}\)

*Trường hợp 1: e=0

Có 2 cách chọn a(\(a\ne e\)\(a\le2\))

Có 3 cách chọn b(\(b\ne a\ne e\)và b<5)

Có 4 cách chọn c

Có 3 cách chọn d

Áp dụng quy tắc nhân ta được:2.3.4.3.1=72 số

*Trường hợp 2: e=2

Có 1 cách chọn a

Có 3 cách chọn b

Có 4 cách chọn c

Có 3 cách chọn d

Áp dụng quy tắc nhân có 1.3.4.3.1=24 số

*Trường hợp 3:e=4

Có 2 cách chọn a

Có 3 cách chọn b

Có 4 cách chọn c

Có 3 cách chọn d

Áp dụng quy tắc nhân có: 2.3.4.3.1=72 số

*Trường hợp 4:\(e\in\left\{6;8\right\}\)

Có 2 cách chon a

Có 4 cách chọn b

Có 4 cách chọn c

Có 3 cách chọn d

Áp dụng quy tắc nhân có:2.4.4.3.2=192 số

Vậy số các số chẵn có 5 chữ số khác nhau và nhỏ hơn 25000 là:72+24+72+192=360 số