K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 5 2021

Đặt \(f\left(x\right)=x^2sinx+x.cosx+1\)

Hàm \(f\left(x\right)\) liên tục trên mọi khoảng thuộc R

Ta có: \(f\left(0\right)=1>0\)

\(f\left(\pi\right)=-\pi+1< 0\)

\(\Rightarrow f\left(0\right).f\left(\pi\right)< 0\Rightarrow\) phương trình \(f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\pi\right)\)

Hay pt đã cho luôn có nghiệm trên R

7 tháng 5 2021

Em cảm ơn ạ 

18 tháng 3 2022

\(L=\lim\limits_{x\rightarrow+\infty}\left(2x^2-\sqrt{x^2-x}.\sqrt[3]{8x^3+12x^2-3x}\right)\)

Đặt \(f\left(x\right)=2x^2-\sqrt{x^2-x}.\sqrt[3]{8x^3+12x^2-3x}\)

Ta có:

\(2.f\left(x\right)=4x^2-\sqrt{4x^2-4x}.\sqrt[3]{8x^3+12x^2-3x}\)

\(=1+\left(4x^2-1\right)-\sqrt{4x^2-4x}.\sqrt[3]{8x^3+12x^2-3x}\)

\(=1+\left(2x-1\right)\left(2x+1-\sqrt[3]{8x^3+12x^2-3x}\right)+\left(2x-1-\sqrt{4x^2-4x}\right).\sqrt[3]{8x^3+12x^2-3x}\)

Đặt \(A\left(x\right)=\left(2x-1\right)\left(2x+1-\sqrt[3]{8x^3+12x^2-3x}\right)\)

\(B\left(x\right)=\left(2x-1-\sqrt{4x^2-4x}\right).\sqrt[3]{8x^3+12x^2-3x}\)

\(A\left(x\right)=\left(2x-1\right)\left(2x+1-\sqrt[3]{8x^3+12x^2-3x}\right)\)

\(=\dfrac{\left(2x-1\right)\left(8x^3+12x^2+6x+1-8x^3-12x^2+3x\right)}{\left(2x+1\right)^2+\sqrt[3]{\left(8x^3+12x^2-3x\right)^2}+\left(2x+1\right)\sqrt[3]{8x^3+12x^2-3x}}\)

\(=\dfrac{\left(2x-1\right)\left(9x+1\right)}{\left(2x+1\right)^2+\sqrt[3]{\left(8x^3+12x^2-3x\right)^2}+\left(2x+1\right)\sqrt[3]{8x^3+12x^2-3x}}\)

\(\Rightarrow\lim\limits_{x\rightarrow+\infty}A\left(x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2-\dfrac{1}{x}\right)\left(9+\dfrac{1}{x}\right)}{\left(2+\dfrac{1}{x}\right)^2+\sqrt[3]{\left(8+\dfrac{12}{x}-\dfrac{3}{x^2}\right)^2}+\left(2+\dfrac{1}{x}\right)\sqrt[3]{8+\dfrac{12}{x}-\dfrac{3}{x^2}}}\)

\(=\dfrac{2.9}{2^2+4+2.2}\)

\(=\dfrac{3}{2}\)

\(B\left(x\right)=\left(2x-1-\sqrt{4x^2-4x}\right).\sqrt[3]{8x^3+12x^2-3x}\)

\(=\dfrac{\left(4x^2-4x+1-4x^2+4x\right).\sqrt[3]{8x^3+12x^2-3x}}{2x-1+\sqrt{4x^2-4x}}\)

\(=\dfrac{\sqrt[3]{8x^3+12x^2-3x}}{2x-1+\sqrt{4x^2-4x}}\)

\(\Rightarrow\lim\limits_{x\rightarrow+\infty}B\left(x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt[3]{8+\dfrac{12}{x}-\dfrac{3}{x^2}}}{2-\dfrac{1}{x}+\sqrt{4-\dfrac{4}{x}}}\)

\(=\dfrac{2}{2+2}\)

\(=\dfrac{1}{2}\)

\(\Rightarrow2L=\lim\limits_{x\rightarrow+\infty}\left[2f\left(x\right)\right]\)

\(=\lim\limits_{x\rightarrow+\infty}\left[1+A\left(x\right)+B\left(x\right)\right]\)

\(=1+\lim\limits_{x\rightarrow+\infty}A\left(x\right)+\lim\limits_{x\rightarrow+\infty}B\left(x\right)\)

\(=1+\dfrac{3}{2}+\dfrac{1}{2}\)

\(=3\)

\(\Rightarrow L=\dfrac{3}{2}\)

18 tháng 3 2022

Đề Hà Tĩnh mới thi :')

NV
6 tháng 1 2022

A là đáp án đúng

6 tháng 1 2022

Em cảm ơn 

19 tháng 12 2021

\(\left\{{}\begin{matrix}6u_2+u_5=1\\3u_3+2u_4=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6u_1.q+u_1.q^4=1\\3u_1.q^2+2u_1.q^3=-1\end{matrix}\right.\)

\(\Rightarrow u_1\left(6q+q^4+3q^2+2q^3\right)=0\)

\(\Leftrightarrow q^3+2q^2+3q+6=0\)

\(\Leftrightarrow\left(q+2\right)\left(q^2+3\right)=0\)

\(\Leftrightarrow q=-\text{​​}2\)

\(\Rightarrow u_1=\dfrac{1}{4}\)

\(\Rightarrow u_n=u_1.q^{n-1}=\dfrac{1}{4}.\left(-2\right)^{n-1}=\left(-2\right)^{n-3}\)

a: \(G\in\left(SAD\right)\)

\(G\in GB\subset\left(GBC\right)\)

Do đó: \(G\in\left(SAD\right)\cap\left(GBC\right)\)

Xét (SAD) và (GBC) có

\(G\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó:(SAD) giao (SBC)=xy,xy đi qua G và xy//AD//BC

b: ABCD là hình bình hành tâm O

nên O là trung điểm chung của AC và BD

Xét ΔACB có

I,O lần lượt là trung điểm của CB,CA

=>IO là đường trung bình của ΔCAB

=>IO//AB

IO//AB

AB\(\subset\)(SAB)

IO không thuộc mp(SAB)

Do đó: IO//(SAB)

c: Xét ΔSAC có

H,O lần lượt là trung điểm của CS,CA

=>HO là đường trung bình của ΔSAC

=>HO//SA

HO//SA

SA\(\subset\)(SAB)

HO không nằm trong mp(SAB)

Do đó: HO//(SAB)

Ta có: IO//(SAB)

HO//(SAB)

IO,HO\(\subset\)(OHI)

Do đó: (OHI)//(SAB)

 

NV
5 tháng 8 2021

Do MN là đường trung bình tam giác ABC \(\Rightarrow MN||AB\) mà \(AB||CD\Rightarrow MN||CD\)

MN và (ABCD) không có điểm chung \(\Rightarrow MN||\left(ABCD\right)\)

MN và (SCD) không có điểm chung \(\Rightarrow MN||\left(SCD\right)\)

MN nằm trên (SAB) nên MN không song song (SAB)

Vậy MN song song với cả (ABCD) và (SCD)

5 tháng 8 2021

vẽ hình dùm em luôn ạ  

em cảm ơn thầy 

1 tháng 8 2021

f, \(3sin^2x-cosx+2cos2x-3=0\)

\(\Leftrightarrow3-3cos^2x-cosx+2\left(2cos^2x-1\right)-3=0\)

\(\Leftrightarrow cos^2x-cosx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\\cosx=2\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pi+k2\pi\)

1 tháng 8 2021

h, \(cos^2x+cos^22x+cos^23x+cos^24x=2\)

\(\Leftrightarrow2cos^2x+2cos^22x+2cos^23x+2cos^24x=4\)

\(\Leftrightarrow cos2x+cos4x+cos6x+cos8x=0\)

\(\Leftrightarrow2cos5x.cos3x+2cos5x.cosx=0\)

\(\Leftrightarrow cos5x\left(cos3x+cosx\right)=0\)

\(\Leftrightarrow2cos5x.cos2x.cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos5x=0\\cos2x=0\\cosx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{2}+k\pi\\2x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{10}+\dfrac{k\pi}{5}\\x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)