Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Chọn C
Bài 4:
a: \(\widehat{C}=180^0-80^0-50^0=50^0\)
Xét ΔABC có \(\widehat{A}=\widehat{C}< \widehat{B}\)
nên BC=AB<AC
b: Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
Xet tam giac BDC va tam giac CEB ta co
^BDC = ^CEB = 900
BC _ chung
^BCD = ^CBE ( gt )
=> tam giac BDC = tam giac CEB ( ch - gn )
=> ^DBC = ^ECB ( 2 goc tuong ung )
Ta co ^B - ^DBC = ^ABD
^C - ^ECB = ^ACE
=> ^ABD = ^ACE
Xet tam giac IBE va tam giac ICD
^ABD = ^ACE ( cmt )
^BIE = ^CID ( doi dinh )
^BEI = ^IDC = 900
Vay tam giac IBE = tam giac ICD (g.g.g)
c, Do BD vuong AC => BD la duong cao
CE vuong BA => CE la duong cao
ma BD giao CE = I => I la truc tam
=> AI la duong cao thu 3
=> AI vuong BC
a: |x|=5,6
=>\(\left[{}\begin{matrix}x=5,6\\x=-5,6\end{matrix}\right.\)
c: \(\left|x\right|=3\dfrac{1}{5}\)
=>\(\left|x\right|=3,2\)
=>\(\left[{}\begin{matrix}x=3,2\\x=-3,2\end{matrix}\right.\)
d: |x|=-2,1
mà -2,1<0
nên \(x\in\varnothing\)
d: |x-3,5|=5
=>\(\left[{}\begin{matrix}x-3,5=5\\x-3,5=-5\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=8,5\\x=-1,5\end{matrix}\right.\)
e: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
=>\(\left|x+\dfrac{3}{4}\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{2}\\x+\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
f: \(\left|4x\right|-\left|-13,5\right|=\left|2\dfrac{1}{4}\right|\)
=>\(4\left|x\right|=2,25+13,5=15,75\)
=>\(\left|x\right|=\dfrac{63}{16}\)
=>\(x=\pm\dfrac{63}{16}\)
g: \(\dfrac{5}{6}-\left|2-x\right|=\dfrac{1}{3}\)
=>\(\dfrac{5}{6}-\left|x-2\right|=\dfrac{1}{3}\)
=>\(\left|x-2\right|=\dfrac{5}{6}-\dfrac{1}{3}=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}x-2=\dfrac{1}{2}\\x-2=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
h: \(\left|x-\dfrac{2}{5}\right|+\dfrac{1}{2}=\dfrac{3}{4}\)
=>\(\left|x-\dfrac{2}{5}\right|=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)
=>\(\left[{}\begin{matrix}x-\dfrac{2}{5}=\dfrac{1}{4}\\x-\dfrac{2}{5}=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}+\dfrac{2}{5}=\dfrac{13}{20}\\x=-\dfrac{1}{4}+\dfrac{2}{5}=\dfrac{-5+8}{20}=\dfrac{3}{20}\end{matrix}\right.\)
i: \(\left|5-3x\right|+\dfrac{2}{3}=\dfrac{1}{6}\)
=>\(\left|3x-5\right|=\dfrac{1}{6}-\dfrac{2}{3}=\dfrac{1}{6}-\dfrac{4}{6}=-\dfrac{3}{6}=-\dfrac{1}{2}< 0\)
=>\(x\in\varnothing\)
k: \(-2,5+\left|3x+5\right|=-1,5\)
=>|3x+5|=-1,5+2,5=1
=>\(\left[{}\begin{matrix}3x+5=1\\3x+5=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-4\\3x=-6\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=-2\end{matrix}\right.\)
m: \(\dfrac{1}{5}-\left|\dfrac{1}{5}-x\right|=\dfrac{1}{5}\)
=>\(\left|\dfrac{1}{5}-x\right|=\dfrac{1}{5}-\dfrac{1}{5}=0\)
=>\(\dfrac{1}{5}-x=0\)
=>\(x=\dfrac{1}{5}\)
n: \(-\dfrac{22}{15}x+\dfrac{1}{3}=\left|-\dfrac{2}{3}+\dfrac{1}{5}\right|\)
=>\(-\dfrac{22}{15}x+\dfrac{1}{3}=\dfrac{2}{3}-\dfrac{1}{5}\)
=>\(-\dfrac{22}{15}x=\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{2}{15}\)
=>-22x=2
=>\(x=-\dfrac{1}{11}\)
1)
a. Xét tg ABC cân tại A có AC=AB; gACB = g ABC.
Xét tg ACN và tg ABM có:
CN=BM (gt)
AC=AB
gACB=gABC
=> tg ACN = tg ABM (cgc)
=> AN=AM (2 cạnh tg ứng)
H là trung điểm BC nên AH là đường trung tuyến của tg ABC
Mak tg ABC cân => H cũng là đường cao của tg ABC => AH ⊥ BC
b. Vì H là trung đ của BC nên CH=HB=BC/2= 3cm
Áp dụng định lý Py ta go vào tg AHB có:
AB^2=AH^2+HB^2
AH^2= AB^2 - HB^2
AH^2= 5^2 - 3^2 = 16 cm
=> AH= 4 cm
c. Xét tg AMN và tg KMB có:
AM=KM (gt)
MN=BM (gt)
gHMA=gKMB (đối đỉnh)
=> tg AMN = tg KMB (cgc)
d. tg AMN = tg KMB => gMAN=gMKB
=> AN=KB=Am
Mà AB>AM (quan hệ giữ đường xiêng và hình chiếu) nên AB>BK
=> gBKA> gBAK
=> gMAN>gBAM
\(5,\\ a,\left\{{}\begin{matrix}AB=CD\left(gt\right)\\AD=BC\left(gt\right)\\AC.chung\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.c.c\right)\\ b,\Delta ABC=\Delta CDA\left(cm.trên\right)\\ \Rightarrow\left\{{}\begin{matrix}\widehat{CAB}=\widehat{DCA}\\\widehat{CAD}=\widehat{ACB}\end{matrix}\right.\left(các.cặp.góc.tương.ứng\right)\)
Mà các cặp góc này ở vị trí so le trong nên \(AB//CD;AD//BC\)
b: Để A nguyên thì \(x+2\in\left\{1;-1\right\}\)
hay \(x\in\left\{-1;-3\right\}\)
Để B nguyên thì \(\sqrt{x}-1\in\left\{-1;1;2;3;6\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3;4;7\right\}\)
hay \(x\in\left\{0;4;9;16;49\right\}\)
a) Ta có: \(\dfrac{a}{3b+c}=\dfrac{b}{a+3c}=\dfrac{c}{3a+b}=\dfrac{a+b+c}{3b+c+a+3c+3a+b}=\dfrac{a+b+c}{4\left(a+b+c\right)}=\dfrac{1}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}3b+c=4a\\a+3c=4b\\3a+b=4c\end{matrix}\right.\)
\(\Rightarrow\dfrac{3b+c}{a}+\dfrac{a+3c}{b}+\dfrac{3a+b}{c}=\dfrac{4a}{a}+\dfrac{4b}{b}+\dfrac{4c}{c}=4+4+4=12\)
b) \(A=\dfrac{x+1}{x+2}=\dfrac{x+2}{x+2}-\dfrac{1}{x+2}=1-\dfrac{1}{x+2}\in Z\)
\(\Rightarrow\left(x+2\right)\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow x\in\left\{-3;-1\right\}\)
\(B=\dfrac{\sqrt{x}+5}{\sqrt{x}-1}\left(đk:x\ge0\right)=1+\dfrac{6}{\sqrt{x}-1}\in Z\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(x\ge0,x\in Z\)
\(\Rightarrow x\in\left\{0;4;9;16;49\right\}\)