Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không phải thầy cô nhma mình biết làm ,xin phép he:
1)
<=> \(\dfrac{cos\left(a-b\right)}{cos\left(a+b\right)}=\dfrac{cos\alpha.cosb+sina.sinb}{cosa.cosb-sina.sinb}\)
\(=\dfrac{\dfrac{cosa.cosb+sina.sinb}{sina.sinb}}{\dfrac{cosa.cosb-sina.sinb}{sina.sinb}}\)
( chia cả tử và mẫu cho sina.sinb).
\(=\dfrac{\dfrac{cosa}{sina}.\dfrac{cosb}{sinb}+1}{\dfrac{cosa}{sina}.\dfrac{cosb}{sinb}-1}\)
\(=\dfrac{cota.cotb+1}{cota.cotb-1}\)
5:
(d) vuông góc 2x-y-2018=0
=>(d): x+2y+c=0
(C): x^2+4x+4+y^2-6y+9-25=0
=>(x+2)^2+(y-3)^2=25
=>R=5; I(-2;3)
Theo đề, ta có: d(I;(d))=5
=>\(\dfrac{\left|1\cdot\left(-2\right)+2\cdot3+c\right|}{\sqrt{5}}=5\)
=>|c+4|=5căn 5
=>c=5căn5-4 hoặc c=-5căn 5-4
11c.
Từ đề bài ta có:
\(\left\{{}\begin{matrix}\dfrac{16a-b^2}{4a}=\dfrac{9}{2}\\16a+4b+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2b^2=-4a\\b=-4a-1\end{matrix}\right.\)
\(\Rightarrow2b^2-b=1\Leftrightarrow2b^2-b-1=0\Rightarrow\left[{}\begin{matrix}b=1\Rightarrow a=-\dfrac{1}{2}\\b=-\dfrac{1}{2}\Rightarrow a=-\dfrac{1}{8}\end{matrix}\right.\)
Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=-\dfrac{1}{2}x^2+x+4\\y=-\dfrac{1}{8}x^2-\dfrac{1}{2}x+4\end{matrix}\right.\)
4f.
Từ đề bài ta có:
\(\left\{{}\begin{matrix}1+b+c=0\\\dfrac{4c-b^2}{4}=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=-b-1\\c=\dfrac{b^2}{4}-1\end{matrix}\right.\)
\(\Rightarrow\dfrac{b^2}{4}+b=0\)
\(\Rightarrow\left[{}\begin{matrix}b=0\Rightarrow c=-1\\b=-4\Rightarrow c=3\end{matrix}\right.\)
Có 2 parabol thỏa mãn: \(\left[{}\begin{matrix}y=x^2-1\\y=x^2-4x+3\end{matrix}\right.\)
Hai câu c và d chỉ là BĐT \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\), cách chứng minh \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\) thế nào thì chứng minh c và d như vậy (biến đổi thành tổng của 3 bình phương các hiệu)
Với câu c thì \(x=ab;y=bc;z=ca\), câu d thì \(x=a^2b;y=...\)
Nhờ thầy viết cho em vài dòng câu d với ạ, câu d em chưa xử lý được thầy ạ?
Bài 10:
a: \(\overrightarrow{AB}+\overrightarrow{BO}+\overrightarrow{OA}\)
\(=\overrightarrow{AO}+\overrightarrow{OA}=\overrightarrow{0}\)
b: \(\overrightarrow{OA}+\overrightarrow{BC}+\overrightarrow{DO}+\overrightarrow{CD}\)
\(=\overrightarrow{OA}+\overrightarrow{DO}+\overrightarrow{BD}\)
\(=\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{BA}\)
595:
a: \(\dfrac{cota\cdot cotb+1}{cota\cdot cotb-1}=\left(\dfrac{cosa}{sina}\cdot\dfrac{cosb}{sinb}+1\right):\left(\dfrac{cosa}{sina}\cdot\dfrac{cosb}{sinb}-1\right)\)
\(=\dfrac{cosa\cdot cosb+sina\cdot sinb}{sina\cdot sinb}:\dfrac{cosa\cdot cosb-sina\cdot sinb}{sina\cdot sinb}\)
\(=\dfrac{cos\left(a-b\right)}{cos\left(a+b\right)}\)
3: \(\dfrac{sin\left(a+b\right)sin\left(a-b\right)}{cos^2a\cdot cos^2b}=\dfrac{\left(sina\cdot cosb+sinb\cdot cosa\right)\left(sina\cdot cosb-sinb\cdot cosa\right)}{cos^2a\cdot cos^2b}\)
\(=\dfrac{sin^2a\cdot cos^2b-sin^2b\cdot cos^2a}{cos^2a\cdot cos^2b}\)
\(=\dfrac{sin^2a\cdot cos^2b-cos^2a\left(1-cos^2b\right)}{cos^2a\cdot\left(cos^2b\right)}\)
\(=\dfrac{sin^2a\cdot cos^2b+cos^2a\cdot cos^2b-cos^2a}{cos^2a\cdot cos^2b}=\dfrac{cos^2b-cos^2a}{cos^2a\cdot cos^2b}\)
tan^2a-tan^2b
=(sin^2a/cos^2a)-(sin^2b/cos^2b)
=(\(=\dfrac{\left(sina\cdot cosb\right)^2-\left(sinb\cdot cosa\right)^2}{cos^2a\cdot cos^2b}=\dfrac{\left(sina\cdot cosb-sinb\cdot cosa\right)\left(sina\cdot cosb+sinb\cdot cosa\right)}{cos^2a\cdot cos^2b}\)
=sin(a+b)sin(a-b)/cos^2a*cos^2b
4:
1-tan^2a*tan^2b
\(=1-\dfrac{sin^2a\cdot sin^2b}{cos^2a\cdot cos^2b}=\dfrac{cos^2a\cdot cos^2b-sin^2a\cdot sin^2b}{cos^2a\cdot cos^2b}\)
\(=\dfrac{\left(cosa\cdot cosb-sina\cdot sinb\right)\left(cosa\cdot cosb+sina\cdot sinb\right)}{cos^2a\cdot cos^2b}\)
\(=\dfrac{cos\left(a+b\right)\cdot cos\left(a-b\right)}{cos^2a\cdot cos^2b}\)