Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\sqrt{2x+3}=0\) \(ĐK:x\ge\dfrac{-3}{2}\)
\(\Leftrightarrow x=\sqrt{2x+3}\left(x\ge0\right)\)
\(\Leftrightarrow x^2=2x+3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)
Vậy.........
\(a^3+b^3=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}\)
\(=\sqrt{6}-\sqrt{2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}=0\)
\(\Rightarrow a=-b\Rightarrow a^5+b^5=0\)
4:
1: S=1,2^2*3,14=4,5216m3
2:
a: góc ABC+góc ABF=180 độ
=>B,C,F thẳng hàng
góc CDF=góc CEF=90 độ
=>CDEF nội tiếp
Hệ có nghiệm duy nhất khi \(m^2\ne1\Rightarrow m\ne\pm1\)
Khi đó: \(\left\{{}\begin{matrix}x+my=m+1\\m^2x+my=3m^2-m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+my=m+1\\\left(m^2-1\right)x=3m^2-2m-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3m+1}{m+1}\\y=\dfrac{m-1}{m+1}\end{matrix}\right.\)
Đặt \(P=xy=\dfrac{\left(3m+1\right)\left(m-1\right)}{\left(m+1\right)^2}=\dfrac{3m^2-2m-1}{\left(m+1\right)^2}=\dfrac{-\left(m+1\right)^2+4m^2}{\left(m+1\right)^2}\)
\(=-1+\left(\dfrac{2m}{m+1}\right)^2\ge-1\)
\(P_{min}=-1\) khi \(m=0\)
Bài 3.
a. Ta có: \(CK=BK\left(gt\right)\Rightarrow OK\perp BC\)
Ta có: \(\widehat{OIC}=90^o\)
\(\widehat{OKC}=90^o\)
\(\Rightarrow\widehat{OIC}+\widehat{OKC}=90^o+90^o=180^o\)
`=>` Tứ giác CIOK nội tiếp đường tròn
b. Xét \(\Delta AID\) và \(\Delta CIB\), có:
\(\widehat{AID}=\widehat{CIB}=90^o\left(gt\right)\)
\(\widehat{ADI}=\widehat{CBI}\) ( cùng chắn \(\stackrel\frown{AC}\) )
Vậy \(\Delta AID\sim\Delta CIB\) ( g.g)
\(\Rightarrow\dfrac{IA}{IC}=\dfrac{ID}{IB}\)
\(\Leftrightarrow IC.ID=IA.IB\)
c. Kẻ \(DM\perp AC\)
Ta có: \(\widehat{ACB}=90^o\) ( góc nt chắn nửa đtròn )
`->` Tứ giác DMCK là hình chữ nhật
\(\rightarrow DK\perp BC\)
Mà \(OK\perp BC\)
\(\Rightarrow\) 3 điểm D,O,K thẳng hàng
b: \(BC=\sqrt{89}\left(cm\right)\)
\(\sin\widehat{B}=\dfrac{5\sqrt{89}}{89}\)
\(\Leftrightarrow\widehat{B}\simeq32^0\)
\(\widehat{C}=58^0\)
ĐKXĐ: x>=0; x<>9
\(B=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
a: Ta có: \(A=\sin^21^0+\sin^22^0+...+\sin^288^0+\sin^289^0\)
\(=\left(\sin^21^0+\sin^289^0\right)+...+\sin^245^0\)
\(=1+1+...+1+\dfrac{1}{2}\)
\(=\dfrac{89}{2}\)