Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
\(A=2x^2+3x-10x-15-2x^2+6x+x+7=-8\\ B=x^3-y^3-5+2y^3-x^3-y^3=-5\\ C=x^3-3x^2+3x-1-x^3-3x^2-3x-1-6x^2+6=4\)
Bài 4:
b: \(B=\left(x-y\right)\left(x^2+xy+y^2\right)+2y^3-5-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=x^3-y^3+2y^3-5-x^3-y^3\)
=-5
c: \(C=\left(x-1\right)^3-\left(x+1\right)^3-6\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1-6\left(x^2-1\right)\)
\(=-6x^2-2-6x^2+6\)
\(=-12x^2+4\)
Lời giải:
a. Tứ giác $ENHK$ có $\widehat{H}=\widehat{K}=\widehat{N}=90^0$ nên $ENHK$ là hình chữ nhật.
$\Rightarrow EN=HK(1)$ (tính chất hình chữ nhật)
b.
Xét tam giác $BHA$ và $ANE$ có:
$\widehat{BHA}=\widehat{ANE}=90^0$
$\widehat{HBA}=90^0-\widehat{BAH}=\widehat{NAE}$
$\Rightarrow \triangle BHA\sim \triangle ANE$ (g.g)
$\Rightarrow \frac{HA}{NE}=\frac{BA}{AE}=1$
$\Rightarrow HA=NE(2)$
Từ $(1); (2)\Rightarrow HA=HK$
c. Gọi $M$ là giao điểm $BI$ và $AH$
Vì $BAE$ là tam giác cân tại $A$ nên đường trung tuyến $AI$ đồng thời là đường cao.
$\Rightarrow AI\perp BE$
Xét tam giác $BMH$ và $AMI$ có:
$\widehat{BHM}=\widehat{AIM}=90^0$
$\widehat{BMH}=\widehat{AMI}$ (đối đỉnh)
$\Rightarrow \triangle BMH\sim \triangle AMI$ (g.g)
$\Rightarrow \frac{BM}{MH}=\frac{AM}{MI}$
Xét tam giác $BMA$ và $HMI$ có:
$\widehat{BMA}=\widehat{HMI}$ (đối đỉnh)
$\frac{BM}{HM}=\frac{MA}{MI}$ (cmt)
$\Rightarrow \triangle BMA\sim \triangle HMI$ (g.g)
$\Rightarrow \widehat{MBA}=\widehat{MHI}$
$\Rightarrow \widehat{EBA}=\widehat{AHI}$
Mà $\widehat{EBA}=45^0$ (do $BAE$ vuông cân tại $A$)
$\Rightarrow \widehat{AHI}=45^0$
Câu 5:
a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x^2-4x+3+11\)
\(=x^2-4x+4+10\)
\(=\left(x-2\right)^2+10\ge10\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Câu 5:
a) \(A=\left(x-1\right)\left(x-3\right)+11=x^2-4x+3+11\)
\(=x^2-4x+14\)
\(=\left(x^2-4x+4\right)+10=\left(x-2\right)^2+10\ge10\)
\(minA=10\Leftrightarrow x=2\)
b) \(B=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Bài 2:
b: \(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
a) Ta có: AB//CD.
=>ABH=BDC (2 góc so le trong).
=> ∆AHB~∆BCD(g.g).
b) ∆ABD có : DB²=AB²+AD²( Định lý Pitago)
=> DB= 15(cm).
Ta có ∆ABH~∆BCD(cmt).
=>AH/BC=AD/BD.
Hay AH=9.12/15=7,2(cm).
c)Ta có ∆AHB~∆BCD cmt.
=> HBA=CBD. (1)
Ta lại có : CBD= ADH (AB//CD).(2)
Từ 1 và 2 => HAB=ADH.
=>∆DHA~∆AHB(g.g).
S∆DHA/S∆AHB=(AD/AB)²=9/16
d) từ câu (a) và (b) => ∆BCD~∆DHA.
Cm ∆DHA~∆MDA(g.g)
Từ đó suy ra ∆BDC~∆MDA.
Sau đó cm ∆BCD~∆ADC(g.g).
=> ∆MDA~∆ADC(g.g).
=>Ad/DC=DM/DC.
=>Đpcm.
c, Vì ME⊥AC và BA⊥AC
⇒ ME// AB (1)
Mà M là trung điểm của BC
⇒ E là trung điểm của AC
⇒ ME là đường TB của ΔABC
\(\Rightarrow ME=\dfrac{1}{2}AB\)
Chứng minh tương tự ta có: D là trung điểm của AB
⇒ DA=DB
⇒ ME=DA=DB (2)
Từ (1)(2) ⇒ BDEM là hình bình hành
Ta có:
AM=1/2MB(GT) ➪AM=MB
Xét tam giác AMB, ta có:
AM=MB ( CMT)
➪ Tam giác AMB là tam giác cân mà MD lại là đường cao của tam giác AMB( do MD┷ AB (GT))
➪ MD vừa là đường cao vừa là đường cao vừa là đường trung tuyến của tam giác AMB (T/C)
➪ DA=DB mà EM=AD ( do EMDA là hình chữ nhật (CM ở b))
➪ EM=DB (1)
Ta có:
ED=MA( do do EMDA là hình chữ nhật (CM ở b))
mà MA=MB (CMT)
➪MB=ED(2)
Từ (1) và (2)
➪ EMBD là hình bình hành (DHNB)
4:
a: Xét ΔEFA và ΔAMC có
góc EFA=góc AMC(=góc EIM)
góc EAF=góc ACM
=>ΔEFA đồng dạng với ΔAMC
=>EF/AM=EA/AC
=>EF*AC=AM*EA
b: ΔEFA đồng dạng với ΔAMC
=>S EFA/S AMC=(EF/AM)^2=1/9
=>S EFA=1/9*S AMC
mà S AMC=1/2*S ABC
nên S EFA=1/9*1/2*S ABC=1/18*S ABC