K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

Bài 1:

a: \(=15x^2-6x+5x-2\)

\(=\left(5x-2\right)\left(3x+1\right)\)

b: \(=4x^2-8x-x+2\)

\(=\left(x-2\right)\left(4x-1\right)\)

14 tháng 11 2021

a) \(\left(4x^{^5}-8x^3\right):\left(-2x^3\right)\)

\(=\left(2x^{10}-2x^9\right):\left(-2x^3\right)\)

\(=\left[2x^{10}:\left(-2x^3\right)\right]-\left[2x^9:\left(-2x^3\right)\right]\)

\(=-x^7+x^6\)

14 tháng 11 2021

Bài 2:

\(a,=-2x^2+4\\ b,=-3x^2+4x-1\\ c,=-\dfrac{1}{2}-2xy+\dfrac{3}{2}x^2y^2\\ d,=6-8xy+2x^2y^2\\ e,=2\left(x-y\right)^2-7\left(x-y\right)+1\\ f,=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)

9 tháng 4 2022

Gọi thời gian vòi I chảy riêng đến khi đầy bể là \(x\) (giờ)

Trong 1 giờ vòi I chảy được \(\dfrac{1}{x}\) bể.

Đổi: 1 giờ 20 phút = \(\dfrac{4}{3}\) giờ

Mỗi giờ hai vòi chảy được là \(\dfrac{1}{\dfrac{4}{3}}=\dfrac{3}{4}\) bể, vậy mỗi giờ vòi II chảy được \(\dfrac{3}{4}-\dfrac{1}{x}\) (bể)

Đổi: 10 phút = \(\dfrac{1}{6}\) (giờ), 12 phút = \(\dfrac{1}{5}\) (giờ)

Ta có phương trình: \(\dfrac{1}{6}.\dfrac{1}{x}+\dfrac{1}{5}.\left(\dfrac{3}{4}-\dfrac{1}{x}\right)=\dfrac{2}{15}\)

\(\Rightarrow\dfrac{1}{6x}+\dfrac{3}{20}-\dfrac{1}{5x}=\dfrac{2}{15}\Rightarrow-\dfrac{1}{30x}=-\dfrac{1}{60}\Rightarrow x=2\)

Vậy vòi I chảy riêng trong 2 giờ sẽ đầy bể.

Mỗi giờ vòi II chảy được là \(\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\) bể, nên vòi II chảy riêng trong 4 giờ thì đầy bể.

9 tháng 4 2022

mình cammonn ạ

 

13 tháng 10 2021

a) \(x^2+xy+x\)

\(=x\left(x+y+1\right)\)

Thay x=77, y=22

\(=77\left(77+22+1\right)\)

\(=77.100=7700\)

b) \(x\left(x-y\right)+y\left(y-x\right)\)

\(=\left(x-y\right)\left(x-y\right)\)

\(=\left(x-y\right)^2\)

Thay x=53, y=3

\(=\left(53-3\right)^2\)

\(=50^2=2500\)

c) \(x\left(x-1\right)-y\left(1-x\right)\)

\(=\left(x+y\right)\left(x-1\right)\)

Thay x=2021, y=2029

\(=\left(2021+2019\right)\left(2021-1\right)\)

\(=4040.2020\)

\(=8160800\)

Bài 2: 

Ta có: \(3n^3+10n^2-5⋮3n+1\)

\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

1 tháng 2 2023

\(a.A=\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}-\dfrac{2}{x-2}\right):\left(1-\dfrac{x}{x+2}\right)\left(đk:x\ne\pm2\right)\)

\(=\left[\dfrac{x}{x^2-4}+\dfrac{x-2}{x^2-4}-\dfrac{2\left(x+2\right)}{x^2-4}\right]:\left(\dfrac{x+2}{x+2}-\dfrac{x}{x+2}\right)\)

\(=\dfrac{x+x-2-2x-4}{x^2-4}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{\left(x+2\right)\left(x-2\right)}.\dfrac{x+2}{2}\)

\(=\dfrac{-3}{x-2}\left(1\right)\)

\(b.\) Thay x = 2023 vào (1), ta được:

\(\dfrac{-3}{2023-2}=-\dfrac{3}{2021}\)

\(c.\) Để A là một số nguyên thì \(x-2\inƯ_{\left(-3\right)}\)

Vậy x - 2 có các giá trị sau:

\(\left[{}\begin{matrix}x-2=1\\x-2=-1\\x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\\x=5\\x=-1\end{matrix}\right.\)

2:

a: ĐKXĐ: \(x\notin\left\{0;-4\right\}\)

\(\dfrac{6}{x^2+4x}+\dfrac{3}{2x+8}\)

\(=\dfrac{6}{x\left(x+4\right)}+\dfrac{3}{2\left(x+4\right)}\)

\(=\dfrac{12+3x}{2x\left(x+4\right)}=\dfrac{3\left(x+4\right)}{2x\left(x+4\right)}=\dfrac{3}{2x}\)

b: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{x+1}{x-2}+\dfrac{x-2}{x+2}+\dfrac{x-14}{x^2-4}\)

\(=\dfrac{\left(x+1\right)\cdot\left(x+2\right)+\left(x-2\right)^2+x-14}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+3x+2+x^2-4x+4+x-14}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x^2-8}{x^2-4}=2\)

c: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

\(\dfrac{2}{x+1}+\dfrac{-4}{1-x}+\dfrac{5x+1}{1-x^2}\)

\(=\dfrac{2}{x+1}+\dfrac{4}{x-1}-\dfrac{5x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{2x-2+4x+4-5x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{1}{x-1}\)

d: ĐKXĐ: \(x\ne\pm y\)

\(\dfrac{x}{x^2+xy}+\dfrac{x-3y}{y^2-x^2}+\dfrac{x}{xy-x^2}\)

\(=\dfrac{x}{x\left(x+y\right)}-\dfrac{x-3y}{\left(x-y\right)\left(x+y\right)}-\dfrac{x}{x\left(x-y\right)}\)

\(=\dfrac{1}{x+y}-\dfrac{x-3y}{\left(x-y\right)\left(x+y\right)}-\dfrac{1}{x-y}\)

\(=\dfrac{x-y-x+3y-x-y}{\left(x-y\right)\left(x+y\right)}=\dfrac{-x+y}{\left(x-y\right)\left(x+y\right)}=\dfrac{-1}{x+y}\)

e: ĐKXĐ: \(\left\{{}\begin{matrix}x< >0\\y< >0;x\ne y\end{matrix}\right.\)

\(\dfrac{y}{x^2-xy}+\dfrac{x}{y^2-xy}\)

\(=\dfrac{y}{x\left(x-y\right)}-\dfrac{x}{y\left(x-y\right)}\)

\(=\dfrac{y^2-x^2}{xy\left(x-y\right)}=\dfrac{-\left(x-y\right)\left(x+y\right)}{xy\left(x-y\right)}=\dfrac{-x-y}{xy}\)

f: ĐKXĐ: x<>1

\(\dfrac{11x-4}{x-1}+\dfrac{10x+4}{2-2x}\)

\(=\dfrac{11x-4}{x-1}-\dfrac{5x+2}{x-1}\)

\(=\dfrac{11x-4-5x-2}{x-1}=\dfrac{6x-6}{x-1}=6\)

13 tháng 7 2021

1)

a) 4y2-4xy+x2= x2-4xy+4y2= (x-2y)2

b) 9x2-12xy+4y2= (3x)2-2.3x.2y+(2y)2= (3x-2y)2

c) 16x2-25=(4x)2-52= (4x-5)(4x+5)

d) 1-9y2= 12-(3y)2=(1-3y)(1+3y)

 

13 tháng 7 2021

g) x3-27y3= (x-3y)(x2+3xy+9y2)

h) 64 + 8x3=(4+2x)(16+8x+4x2)