Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}\)
\(=\sqrt{6}-\sqrt{2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}=0\)
\(\Rightarrow a=-b\Rightarrow a^5+b^5=0\)
`3b)\sqrt{25x-25}-15/2\sqrt{(x-2)/9}=6+3/2\sqrt{x-1}`
ĐK:`x>=1`
`pt<=>sqrt{25(x-1)}-15/2*1/3sqrt{x-1}-3/2sqrt{x-1}=6`
`<=>5sqrt{x-1}-5/2sqrt{x-1}-3/2sqrt{x-1}=6`
`<=>5sqrt{x-1}-4sqrt{x-1}=6`
`<=>sqrt{x-1}=6`
`<=>x-1=36`
`<=>x=37(tmddk)`
Vậy `S={37}`
3b) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\dfrac{3}{2}\sqrt{x-1}\left(x\ge1\right)\)
\(\Leftrightarrow\sqrt{25\left(x-1\right)}-\dfrac{15}{2}\sqrt{\dfrac{1}{9}.\left(x-1\right)}-\dfrac{3}{2}\sqrt{x-1}=6\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}.\dfrac{1}{3}\sqrt{x-1}-\dfrac{3}{2}\sqrt{x-1}=6\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}=6\Rightarrow x-1=36\Rightarrow x=37\)
1:
1: Để hàm số đồng biến thì m>0
2: Khi m=2 thì y=2x+1
Tọa độ giao là;
2x+1=x+3 và y=x+3
=>x=2 và y=5
Ta có:x2+y2=25➝(x+y)2-2xy=25➝(x+y)2=1➝x+y=1.Đến đây bạn tự làm.
a: =>x=y+11
xy=60
\(\Leftrightarrow y^2+11y-60=0\)
\(\Leftrightarrow\left(y+15\right)\left(y-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-15\\y=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=15\end{matrix}\right.\)
a.
ĐKXĐ: \(-3\le x\le\dfrac{3}{2}\)
Ta có:
\(4\sqrt{x+3}=2.2\sqrt{x+3}\le2^2+x+3=x+7\)
\(2\sqrt{3-2x}=2.1.\sqrt{3-2x}\le1^2+3-2x=4-2x\)
Do đó:
\(x+4\sqrt{x+3}+2\sqrt{3-2x}\le x+x+7+4-2x=11\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x+3}=2\\\sqrt{3-2x}=1\end{matrix}\right.\) \(\Leftrightarrow x=1\)
Vậy pt có nghiệm duy nhất \(x=1\)
b.
ĐKXĐ: \(x\ge-\dfrac{3}{2}\)
\(x^2+4x+5-2\sqrt{2x+3}=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
Vậy pt có nghiệm duy nhất \(x=-1\)
`2)B=(sqrtx+1)/(x-1)-(x+2)/(xsqrtx-1)-(sqrtx+1)/(x+sqrtx+1)(x>0,x ne 1)`
`=(sqrtx+1)/(x-1)-(x+2)/(xsqrtx-1)-(x-1)/(xsqrtx-1)`
`=(sqrtx+1)/(x-1)-(x+2+x-1)/(xsqrtx-1)`
`=(sqrtx+1)/(x-1)-(2x+1)/(xsqrtx-1)`
`=((sqrtx+1)(x+sqrtx+1)-(2x+1)(sqrtx+1))/((x-1)(x-sqrtx+1))`
`=(xsqrtx+2x+2sqrtx+1-2xsqrtx-2x-sqrtx-1)/((x-1)(x-sqrtx+1))`
`=(-xsqrtx+sqrtx)/((x-1)(x-sqrtx+1))`
`=(-sqrtx(x-1))/((x-1)(x-sqrtx+1))`
`=-sqrtx/(x-sqrtx+1)`
Cách khác:
2) Ta có: \(B=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{1}{\sqrt{x}-1}-\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}+1-x-2-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)