Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
13:
\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}sin\left(\dfrac{pi}{33}\right)\cdot cos\left(\dfrac{pi}{33}\right)\cdot cos\left(\dfrac{2pi}{33}\right)\cdot cos\left(\dfrac{4pi}{33}\right)\cdot cos\left(\dfrac{8pi}{33}\right)\cdot cos\left(\dfrac{16pi}{33}\right)\)
\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{2}\cdot sin\dfrac{2}{33}pi\cdot cos\left(\dfrac{2}{33}pi\right)cos\left(\dfrac{4}{33}pi\right)\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)
\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{2}\cdot sin\dfrac{2}{33}pi\cdot cos\left(\dfrac{2}{33}pi\right)cos\left(\dfrac{4}{33}pi\right)\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{4}\cdot sin\dfrac{4}{33}pi\cdot cos\left(\dfrac{4}{33}pi\right)\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)
\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{8}\cdot sin\dfrac{8}{33}pi\cdot cos\left(\dfrac{8}{33}pi\right)\cdot cos\left(\dfrac{16}{33}pi\right)\)
\(=\dfrac{1}{sin\left(\dfrac{pi}{33}\right)}\cdot\dfrac{1}{16}\cdot sin\dfrac{16}{33}pi\cdot cos\left(\dfrac{16}{33}pi\right)\)
\(=\dfrac{1}{sin\left(\dfrac{pi}{3}\right)}\cdot\dfrac{1}{32}\cdot sin\dfrac{32}{33}pi\)
=1/32
10:
\(=\dfrac{1}{2}\left[cos100+cos60\right]+\dfrac{1}{2}\cdot\left[cos100+cos20\right]\)
=cos100+1/2*cos20+1/4
6:
sin6*cos12*cos24*cos48
=1/cos6*cos6*sin6*cos12*cos24*cos48
=1/cos6*1/2*sin12*cos12*cos24*cos48
=1/cos6*1/4*sin24*cos24*cos48
=1/cos6*1/8*sin48*cos48
=1/cos6*1/16*sin96
=1/16
Bài 10:
a: \(\overrightarrow{AB}+\overrightarrow{BO}+\overrightarrow{OA}\)
\(=\overrightarrow{AO}+\overrightarrow{OA}=\overrightarrow{0}\)
b: \(\overrightarrow{OA}+\overrightarrow{BC}+\overrightarrow{DO}+\overrightarrow{CD}\)
\(=\overrightarrow{OA}+\overrightarrow{DO}+\overrightarrow{BD}\)
\(=\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{BA}\)
1: vecto AC=(-1;-7)
=>VTPT là (-7;1)
PTTS là:
x=3-t và y=6-7t
Phương trình AC là:
-7(x-3)+1(y-6)=0
=>-7x+21+y-6=0
=>-7x+y+15=0
2: Tọa độ M là:
x=(3+2)/2=2,5 và y=(6-1)/2=2,5
PTTQ đường trung trực của AC là:
-7(x-2,5)+1(y-2,5)=0
=>-7x+17,5+y-2,5=0
=>-7x+y+15=0
3: \(AB=\sqrt{\left(-1-3\right)^2+\left(3-6\right)^2}=5\)
Phương trình (A) là:
(x-3)^2+(y-6)^2=AB^2=25
a,Áp dụng BĐT Cosi ta có:
\(a^2+\dfrac{1}{a^2}\ge2\sqrt{a^2.\dfrac{1}{a^2}}=2.1=2\)
dấu "=" xảy ra \(\Leftrightarrow a^2=\dfrac{1}{a^2} \Leftrightarrow a^4=1\Leftrightarrow a=\pm 1\)
a. Gọi \(M\left(x;y\right)\Rightarrow\overrightarrow{AM}=\left(x-1;y+1\right)\)
\(\overrightarrow{AM}=\overrightarrow{a}\Rightarrow\left\{{}\begin{matrix}x-1=3\\y+1=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
\(\Rightarrow M\left(4;4\right)\)
b. Do B thuộc Ox nên tọa độ có dạng: \(B\left(x;0\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(x-1;1\right)\)
\(\overrightarrow{AB}\) cùng phương \(\overrightarrow{a}\) khi: \(\dfrac{x-1}{3}=\dfrac{1}{5}\Rightarrow x=\dfrac{8}{5}\)
\(\Rightarrow B\left(\dfrac{8}{5};0\right)\)
c.
\(\overrightarrow{OA}=\left(1;-1\right)\Rightarrow T=1.3+\left(-1\right).5=-2\)
\(\Rightarrow cos\left(\overrightarrow{a},\overrightarrow{OA}\right)=\dfrac{\overrightarrow{a}.\overrightarrow{OA}}{\left|\overrightarrow{a}\right|.\left|\overrightarrow{OA}\right|}=\dfrac{-2}{\sqrt{1^2+\left(-1\right)^2}.\sqrt{3^2+5^2}}=-\dfrac{1}{\sqrt{17}}\)