Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giá trị (x) | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 24 | 25 | 28 | |
Tần số (n) | 2 | 1 | 3 | 3 | 3 | 1 | 4 | 1 | 1 | 1 | N = 20 |
Bài 2:
Giá trị (x) | Đỏ | Vàng | Hồng | Trắng | Tím sẫm | Tím nhạt | Xanh da trời | Xanh lá cây | Xanh nước biển | |
Tần số(n) | 6 | 5 | 4 | 4 | 3 | 3 | 3 | 1 | 1 | N=30 |
Bài 1:
x y m B A C 1 1 2 1
Qua B, vẽ tia Bm sao cho Bm // Ax
Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )
Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o
Ta có: góc B1 + góc B2 = góc ABC
Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )
=> góc B2 = 30o
Ta có: góc B2 + góc C1 = 30o + 150o = 180o
Mà hai góc này ở vị trí trong cùng phía
=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )
Ta lại có:
Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )
=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )
Bài 3:
A B C F E G N M H 1 2
a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )
+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC
=> 2 . AH < AB + AC
=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )
b) Chứng minh EF = BC
+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)
=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)
=> 2 . MG = BG
Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )
=> EM + MG = BG => EG = BG
+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)
=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)
=> 2 . GN = CG
Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )
=> FN + GN = CG => FG = CG
Góc G1 = góc G2 ( đối đỉnh )
Xét tam giác FEG và tam giác CBG có:
FG = CG ( chứng minh trên )
EG = BG ( chứng minh trên )
Góc G1 = góc G2 ( chứng minh trên )
=> tam giác FEG = tam giác CBG ( c.g.c )
=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )
Bài 1.
a) Ta có
\(f\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4\\ f\left(x\right)=-x^5-7x^4-2x^3+x^2+4x+9\)
Lại có:
\(g\left(x\right)=x^5-9+2x^2+7x^4+2x^3-3x\\ g\left(x\right)=x^5+7x^4+2x^3+2x^2-3x-9\)
b) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(h\left(x\right)=\left(-x^5+x^5\right)+\left(-7x^4+7x^4\right)+\left(-2x^3+2x^3\right)+\left(x^2+2x^2\right)+\left(4x-3x\right)+\left(9-9\right)\)
\(h\left(x\right)=3x^2+x\)
c) \(h\left(x\right)=0\)
\(3x^2+x=0\)
\(x\left(3x+1\right)=0\)
TH1: \(x=0\)
TH2: \(3x+1=0\) hay \(x=-\dfrac{1}{3}\)
Vậy nghiệm của \(h\left(x\right)\) là \(x=0;x=-\dfrac{1}{3}\)
Bài 2.
a) Ta có \(\left\{{}\begin{matrix}A\left(x\right)=6x^3+5x^2\\B\left(x\right)=x^3-x^2\\C\left(x\right)=-2x^3+4x^2\end{matrix}\right.\)
\(D\left(x\right)=A\left(x\right)+B\left(x\right)-C\left(x\right)\)
\(D\left(x\right)=\left(6x^3+x^3-\left(-2x^3\right)\right)+\left(5x^2-x^2-4x^2\right)\)
\(D\left(x\right)=9x^3\)
b) \(D\left(x\right)=0\)
\(9x^3=0\\ x^3=0\\ x=0\)
Vậy nghiệm của đa thức \(D\left(x\right)\) là \(x=0\).