K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

ủa cái này cô cho viết ra luôn r mà bn

25 tháng 11 2021

j vậy ? bài 1 nào

Bài 1: 

a) Ta có: \(2x-3=4x+6\)

\(\Leftrightarrow2x-4x=6+3\)

\(\Leftrightarrow-2x=9\)

\(\Leftrightarrow x=-\dfrac{9}{2}\)

Vậy: \(S=\left\{-\dfrac{9}{2}\right\}\)

Bài 1: 

b) Ta có: \(\dfrac{x+2}{4}-x+3-\dfrac{1-x}{8}=0\)

\(\Leftrightarrow\dfrac{2\left(x+2\right)}{8}+\dfrac{8\left(-x+3\right)}{8}+\dfrac{x-1}{8}=0\)

Suy ra: \(2x+4-8x-24+x-1=0\)

\(\Leftrightarrow-5x-21=0\)

\(\Leftrightarrow-5x=21\)

hay \(x=-\dfrac{21}{5}\)

Vậy: \(S=\left\{-\dfrac{21}{5}\right\}\)

17 tháng 10 2021

Bài 1:

1) \(\Rightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

2) \(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

3) \(\Rightarrow\left(4x-3\right)\left(7-12x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{7}{12}\end{matrix}\right.\)

4) \(\Rightarrow x^3+8-x^3+25x=-17\)

\(\Rightarrow25x=-25\Rightarrow x=-1\)

5) \(\Rightarrow\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)

\(\Rightarrow\left(3x-2\right)\left(3x+2-6x+4\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(-3x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

17 tháng 10 2021

Bài 3: 

c: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)

d: \(x^3-7x-6\)

\(=x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-6\right)\)

\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)

2 tháng 10 2021

Em đang cần gấp ạ

 

Câu 2: 

a: Ta có: \(25x^2-9=0\)

\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

b: Ta có: \(\left(x-4\right)^2-\left(x-2\right)\left(x+2\right)=6\)

\(\Leftrightarrow x^2-8x+16-x^2+4=6\)

\(\Leftrightarrow-8x=-14\)

hay \(x=\dfrac{7}{4}\)

c: Ta có: \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow5x^2+2x+10-5x^2+245=0\)

\(\Leftrightarrow x=-\dfrac{255}{2}\)

28 tháng 10 2021

a) \(x^2-7x+12=x\left(x-4\right)-3\left(x-4\right)=\left(x-4\right)\left(x-3\right)\)

b) \(x^2-9x+20=x\left(x-5\right)-4\left(x-5\right)=\left(x-5\right)\left(x-4\right)\)

c) \(x^2-6x-7=x\left(x-7\right)+1\left(x-7\right)=\left(x-7\right)\left(x+1\right)\)

d) \(x^2-x-12=x\left(x-4\right)+3\left(x-4\right)=\left(x-4\right)\left(x+2\right)\)

18 tháng 8 2015

=x3-x2-2x2+2x+x-1

=x3-3x2+3x-1

=(x-1)3

20 tháng 11 2021

Bài 1:

\(a,\left(-2x\right)\left(3x^2-2x+4\right)=-6x^3+4x^2-8x\\ b,\left(x-2\right)\left(x^2+3x-4\right)=x\left(x^2+3x-4\right)-2\left(x^2+3x-4\right)=x^3+3x^2-4x-2x^2-6x+8=x^3+x^2-10x+8\)

\(c,\left(2x-1\right)\left(x+3\right)\left(3-x\right)=\left(2x-1\right)\left(9-x^2\right)=9\left(2x-1\right)-x^2\left(2x-1\right)=18x-9-2x^3+x^2\\ d,\left(x+3\right)\left(x^2+3x-5\right)=x\left(x^2+3x-5\right)+3\left(x^2+3x-5\right)=x^3+3x^2-5x+3x^2+9x-15=x^3+6x^2+4x-15\)

Bài 2:

\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\\ =2x^2-10x+3x-15-2x^2+6x+x+7\\ =-8\)

\(B=2x^2\left(x^2-3x\right)-6x+5+3x\left(2x^2+2\right)-2-2x^4\\ =2x^4-6x^3-6x+5+6x^3+6x-2-2x^4\\ =3\)

Vậy A,B không phụ thuộc vào giá trị của biến

 

 

13 tháng 10 2021

Bài 1: 

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=13(cm)

Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}=6.5\left(cm\right)\)

Bài 1: 

Xét ΔABC có 

E là trung điểm của AB

M là trung điểm của BC

Do đó: EM là đường trung bình của ΔABC

Suy ra: EM//AC và \(EM=\dfrac{AC}{2}\left(1\right)\)

Xét ΔADC có 

N là trung điểm của AD

F là trung điểm của CD

Do đó: NF là đường trung bình của ΔADC

Suy ra: NF//AC và \(NF=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2) suy ra EM//NF và EM=NF

Xét tứ giác EMFN có 

EM//NF

EM=NF

Do đó: EMFN là hình bình hành

Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Xét tứ giác BFDE có

BE//DF

BE=DF

Do đó: BFDE là hình bình hành