K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2021

Câu 1 : 

Do đường thẳng đi qua gốc tọa độ nên 

Thay x = 0 ; y = 0 vào đường thẳng trên ta được 

\(m^2-2m=0\Leftrightarrow m\left(m-2\right)=0\Leftrightarrow m=0;m=2\)

Vậy với m = 0 ; m =2 thì đường thẳng trên đi qua gốc tọa độ 

Bài 2 đề sai rồi, đề làm gì phức tạp thế 

9 tháng 11 2021

Bài 1: hình 2:

áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow20x=144\Rightarrow x=\dfrac{36}{5}\)

\(x+y=BC\Rightarrow\dfrac{36}{5}+y=20\Rightarrow y=\dfrac{64}{5}\)

Bài 2:

hình 4:

BC=BH+HC=1+4=5

áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow1.5=AB^2\Rightarrow x=\sqrt{5}\)

áp dụng HTL ta có: \(HC.BC=AC^2\Rightarrow4.5=AC^2\Rightarrow y=2\sqrt{5}\)

hình 6:

Áp dụng HTL ta có: \(BH.HC=AH^2\Rightarrow4x=25\Rightarrow x=\dfrac{25}{4}\)

 

NV
25 tháng 7 2021

1.2

Đề câu này bị lỗi đoạn cuối, chỗ nằm giữa \(-3x+...+2014\) là gì ấy nhỉ? \(2^2\) đúng không?

Đây là giải theo cách dịch đề bài:

\(A=5x^5-15x^4+14x^3-12x^2-3x+2^2+2014\)

Khi đó:

\(x=\sqrt[3]{2}+1\Rightarrow x-1=\sqrt[3]{2}\)

\(\Rightarrow\left(x-1\right)^3=2\)

\(\Rightarrow x^3-3x^2+3x-1=2\)

\(\Rightarrow x^3-3x^2+3x-3=0\)

Ta có:

\(A=5x^2\left(x^3-3x^2+3x-3\right)-x^3+3x^2-3x+4+2014\)

\(=5x^2.0-\left(x^3-3x^2+3x-3\right)+2015\)

\(=-0+2015=2015\)

Còn nếu đề bài là:

\(A=\left(5x^5-15x^4+14x^3-12x^2-3x+2\right)^2+2014\)

Thì kết quả là: \(A=1+2014=2015\)

NV
25 tháng 7 2021

2.3

Lại 1 câu đề lỗi nữa, biểu thức của pt là:

\(x^2+\left(2m-2\right)x-m^2=0\)

hay \(x^2+2m-2x-m^2=0\)?

Người đánh đề bài này rất ẩu tả, vô trách nhiệm

Coi như đề bài là: \(x^2+\left(2m-2\right)x-m^2=0\)

Ta có:

\(\Delta'=\left(m-1\right)^2+m^2=\dfrac{1}{2}\left(2m-1\right)^2+\dfrac{1}{2}>0\) ; \(\forall m\)

Pt luôn có 2 nghiệm với mọi m

Khi đó theo hệ thức Viet:  \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m^2\end{matrix}\right.\)

\(\left|x_1-x_2\right|=6\Leftrightarrow\left(x_1-x_2\right)^2=36\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=36\)

\(\Leftrightarrow\left(2m-2\right)^2+4m^2=36\)

\(\Leftrightarrow m^2-m-4=0\Rightarrow m=\dfrac{1\pm\sqrt{17}}{2}\)

12 tháng 9 2021

1.

d, ĐK: \(x\ge-5\)

\(x-2-4\sqrt{x+5}=-10\)

\(\Leftrightarrow x+5-4\sqrt{x+5}+3=0\)

\(\Leftrightarrow\left(\sqrt{x+5}-1\right)\left(\sqrt{x+5}-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+5}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+5=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)

\(\Leftrightarrow x=\pm4\left(tm\right)\)

12 tháng 9 2021

2.

ĐK: \(x\in R\)

\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|x+1\right|+\left|x-2\right|=3\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).

\(\left|x+1\right|+\left|x-2\right|=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=3\)

Đẳng thức xảy ra khi:

\(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Leftrightarrow-1\le x\le2\)

26 tháng 1 2022

Tách nhỏ câu hỏi ra bạn

d: \(\Leftrightarrow x^2-x-1=x+2\)

\(\Leftrightarrow x^2-2x-3=0\)

=>(x-3)(x+1)=0

=>x=3 hoặc x=-1

e: \(\Leftrightarrow x^2-x-2+x-1=3x+4\)

\(\Leftrightarrow x^2-3-3x-4=0\)

\(\Leftrightarrow x^2-3x-7=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-7\right)=37\)

Vì Δ>0 nên pt có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{37}}{2}\\x_2=\dfrac{3+\sqrt{37}}{2}\end{matrix}\right.\)

29 tháng 12 2021

Bài 3: 

b: Để hai đường thẳng song song thì \(\left\{{}\begin{matrix}m^2-2=2\\m-2< >-4\end{matrix}\right.\Leftrightarrow m=2\)

11 tháng 10 2021

1.

\(a,\) Áp dụng HTL: 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=18\left(cm\right)\\AH=\sqrt{18\left(50-18\right)}=24\left(cm\right)\end{matrix}\right.\)

\(b,\cos\widehat{ABC}=\dfrac{AB}{BC}=\dfrac{3}{5}\approx\cos53^0\Leftrightarrow\widehat{ABC}\approx53^0\)

Mà BH là đường cao \(\left(BH\perp AI\right)\) và là trung tuyến \(\left(AH=IH\right)\) nên tg ABI cân tại B

Do đó BH cũng là p/g 

Vậy \(2\widehat{ABC}=\widehat{ABI}=2\cdot53^0=106^0\)

11 tháng 10 2021

Bài 2: 

a: Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=20(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=12\left(cm\right)\\BH=9\left(cm\right)\\CH=16\left(cm\right)\end{matrix}\right.\)

Bài 2: 

b: Ta có: \(B=\dfrac{15-5\sqrt{x}}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{-5\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-2}=1\)

3) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(m^2-6\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-6\right)\)

\(=4m^2-8m+4-4m^2+24\)

\(=-8m+28\)

Để phương trình có hai nghiệm phân biệt x1;x2 thì Δ>0

\(\Leftrightarrow-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{1}=2m-2\\x_1x_2=m^2-6\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=16\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-6\right)-16=0\)

\(\Leftrightarrow4m^2-8m+4-2m^2+12-16=0\)

\(\Leftrightarrow2m^2-8m=0\)

\(\Leftrightarrow2m\left(m-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(nhận\right)\\m=4\left(loại\right)\end{matrix}\right.\)