Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1: \(\sqrt{3+2\sqrt{2}}=\sqrt{2}+1\)
2: \(\sqrt{5-2\sqrt{6}}=\sqrt{3}-\sqrt{2}\)
3: \(\sqrt{11-2\sqrt{30}}=\sqrt{6}-\sqrt{5}\)
4: \(\sqrt{7-2\sqrt{10}}=\sqrt{5}-\sqrt{2}\)
1) \(\sqrt{2x-5}=7\)
\(\left(\sqrt{2x-5}\right)^2=7^2\)
\(2x-5=49\)
\(2x=54\)
\(x=27\)
2) \(3+\sqrt{x-2}=4\)
\(\sqrt{x-2}=1\)
\(\left(\sqrt{x-2}\right)^2=1^2\)
\(x-2=1\)
\(x=3\)
1) \(\sqrt{2x-5}=7\left(đk:x\ge\dfrac{5}{2}\right)\)
\(\Leftrightarrow2x-5=49\Leftrightarrow2x=54\Leftrightarrow x=27\left(tm\right)\)
2) \(3+\sqrt{x-2}=4\left(đk:x\ge2\right)\)
\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x-2=1\Leftrightarrow x=3\)
3) \(\Leftrightarrow\sqrt{\left(x-1\right)^2}=1\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
4) \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
5) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+4\right)^2}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x+4\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
6) \(ĐK:x\ge-2\)
\(\Leftrightarrow5\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+2}=\sqrt{x+7}\)
\(\Leftrightarrow\sqrt{x+2}=\sqrt{x+7}\)
\(\Leftrightarrow x+2=x+7\Leftrightarrow2=7\left(VLý\right)\)
Vậy \(S=\varnothing\)
7) \(ĐK:x\ge-1\)
\(\Leftrightarrow5\sqrt{2x+1}+3\sqrt{x+1}=4\sqrt{x+1}+4\sqrt{2x+1}\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{x+1}\)
\(\Leftrightarrow2x+1=x+1\Leftrightarrow x=0\left(tm\right)\)
\(sinB=\dfrac{AC}{BC}\Rightarrow AC=sin60^0.6=3\sqrt{3}\left(cm\right)\)
\(AB=\sqrt{BC^2-AC^2}=\sqrt{6^2-\left(3\sqrt{3}\right)^2}=3\left(cm\right)\)
\(\widehat{C}=90^0-\widehat{B}=90^0-60^0=30^0\)
ΔABC vuông tại A có:
sinB=\(\dfrac{AC}{BC}=\dfrac{AC}{6}\)⇒AC=sin60.6=\(3\sqrt{3}cm\)
cosb=\(\dfrac{AB}{BC}=\dfrac{AB}{6}\)⇒AB=cos60.6=3cm
góc C = 90-góc B=90-30=60 độ
a: \(P=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
\(=\dfrac{2\sqrt{x}+2+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}}{x-1}\)
\(P=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
\(\Rightarrow P=\dfrac{2\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
\(\Rightarrow P=\dfrac{x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
\(\Rightarrow P=\dfrac{\sqrt{x}}{x-1}\)
\(\Rightarrow P=\dfrac{\sqrt{3+2\sqrt{2}}}{3+2\sqrt{2}-1}\)
\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{2+2\sqrt{2}}\)
\(\Rightarrow P=\dfrac{\sqrt{2}+1}{2\left(\sqrt{2}+1\right)}\)
\(\Rightarrow P=\dfrac{1}{2}\)
\(P=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{-2\sqrt{x}}=\dfrac{2x}{-2\sqrt{x}}=-\sqrt{x}\)
\(P=-\sqrt{x}=-\sqrt{4}=-2\left(đpcm\right)\)
Gọi vận tốc xe tải là x
=>Vận tốc xe con là x+20
Sau 45p xe 1 đi được 0,75x(km)
=>Còn lại là 90-0,75x(km)
Hai xe gặp nhau sau 0,75x/20(h)=3/80x(h)
Theo đề, ta có: 90/(x+20)=3/80x
=>30/(x+20)=x/80
=>x^2+20x-2400=0
=>x=40
Câu 1:
\(\tan B=\frac{AC}{AB}=\cot C\)
Đáp án C
Câu 2: B
Câu 3: A
Câu 4, 6, 7 Đề mờ quá
Câu 5: Mờ quá, nhưng bạn cứ áp dụng công thức $\sin =\frac{\text{đối}}{\text{kề}}$
Câu 8:
$DC=BC\sin B=6\sin 60^0=3\sqrt{3}$ (cm)
Đáp án B
Câu 9:
$EF=\frac{DE}{cos E}=\frac{25}{\cos 42^0}=33,64^0$
Đáp án D.
Câu 10:
$CH=BC-BH=25-9=16$ (cm)
Áp dụng HTL trong tam giác vuông:
$AH=\sqrt{BH.CH}=\sqrt{9.16}=12$ (cm)
Đáp án C.