K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2020

Có làm mới có ăn

23 tháng 12 2020

đúng

 

20 tháng 1 2020

Bài 1: 

A B C I E D H

Vẽ \(IH\) là tia phân giác của \(\widehat{AIC}\)

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}=180^0-60^0=120^0\)

Ta có: \(AD\) là tia phân giác của \(\widehat{A}\left(1\right)\)

Và: \(CE\) là tia phân giác của \(\widehat{C}\left(2\right)\) 

Từ   \(\left(1\right)\left(2\right)\Rightarrow\widehat{IAC}+\widehat{ICA}=\frac{120^0}{2}=60^0\)

Lại có: \(\widehat{EIA}=\widehat{IAC}+\widehat{ICA}=60^0=\widehat{AIH}\)

Xét \(\Delta EAI\) và \(\Delta HAI\) có:

\(\widehat{EAI}=\widehat{HAI}\left(AD-là-tia-p.giác-của\widehat{A}\right)\)

\(\widehat{AIE}=\widehat{AIH}\left(cmt\right)\)

\(AI\) chung

\(\Rightarrow\Delta AIE=\Delta AIH\left(g-c-g\right)\)

\(\Rightarrow IE=IH\left(1\right)\)

Chứng minh tương tự \(\Delta CHI=\Delta CDI\left(g-c-g\right)\Rightarrow ID=IH\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow IE=ID\)

\(\Rightarrow\Delta IDE\) cân tại \(I\left(đpcm\right)\)

21 tháng 1 2020

2. A B C H K D E

Trên cạnh BC lấy điểm E sao cho BE = BD => \(\Delta\)DBE cân tại B (1)

=> BD = BE 

Ta có: BD là phân giác ^ABC  => ^DBE = 40\(^{^o}\): 2 = 20\(^o\)(2)

(1) ; (2) => ^BDE = ^DED = ( 180\(^o\)- 20\(^o\)) : 2 = 80\(^o\)

=> ^DEC = 180\(^o\)- 80\(^o\)=100\(^o\)

Xét \(\Delta\)DEC có: ^EDC = 180\(^o\)- ^DEC - ^DCE = 180\(^o\)-100\(^o\)-40\(^o\)=40\(^o\)

=> \(\Delta\)DEC cân tại E => DE = EC (3)

Từ D kẻ vuông góc với BC tại H và BA tại K.

D thuộc đường phân giác ^ABC  ( theo t/c đường phân giác ) => DK = DH 

Vì ^BAC = ^DEC = 100\(^o\)=> ^KAD = ^HED 

=> \(\Delta\)KAD = \(\Delta\)HED ( cạnh góc vuông - góc nhọn )

=> DA = DE (4)

Từ (3) ; (4) => DA = EC 

Vậy BC = BE + EC = BD + AD

2 tháng 2 2022

- Ta có: \(\widehat{ABE}+\widehat{CAE}=90^0\) (AB⊥AC tại A).

\(\widehat{AEH}+\widehat{HAE}=90^0\) (△AHE vuông tại H).

Mà \(\widehat{CAE}=\widehat{HAE}\) (AE là phân giác của \(\widehat{HAC}\)).

=>\(\widehat{ABE}=\widehat{AEH}\).

=>△ABE cân tại B.

=>\(AB=BE\).

- Ta có: \(\widehat{DAC}+\widehat{BAD}=90^0\) (AB⊥AC tại A).

\(\widehat{HAD}+\widehat{ADH}=90^0\) (△AHE vuông tại H).

Mà \(\widehat{BAD}=\widehat{HAD}\) (AD là phân giác của \(\widehat{HAB}\)).

=>\(\widehat{DAC}=\widehat{ADH}\).

=>△ACD cân tại C.

=>\(AC=CD\).

- Xét △ABC vuông tại A có:

\(BC^2=AB^2+AC^2\) (định lí Py-ta-go).

=>\(BC^2=5^2+12^2\).

=>\(BC^2=169\).

=>\(BC=13\) (cm).

\(AB+AC-BC=BE+CD-BC=BE+CD-BE-CE=CD-CE=DE\)=>\(DE=5+12-13=4\) (cm).

2 tháng 2 2022

cảm ơn bn !

a: Xét ΔADB và ΔAEC có

AD=AE

\(\widehat{BAD}\) chung

AB=AC

Do đó: ΔADB=ΔAEC

=>BD=CE

b: Ta có: AE+EB=AB

AD+DC=AC

mà AE=AD và AB=AC

nên EB=DC

Xét ΔEBC và ΔDCB có

EB=DC

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đo: ΔEBC=ΔDCB

=>\(\widehat{ECB}=\widehat{DBC}\)

=>\(\widehat{GBC}=\widehat{GCB}\)

=>ΔGBC cân tại G

=>GB=GC

Ta có: ΔEBC=ΔDCB

=>EC=BD

Ta có: EG+GC=EC

DG+GB=DB

mà GC=GB và EC=DB

nên EG=DG

c: TH1: BC=10cm

=>AB=AC=5cm

Vì AB+AC=BC

nên trường hợp này không xảy ra

=>LOại

TH2: BC=5cm

=>AB=AC=10cm

Vì 10+10>5 và 10+5>10 và 10+5>10

nên đây là độ dài ba cạnh của ΔABC phù hợp với yêu cầu đề bài

Chu vi tam giác ABC là:

10+10+5=25(cm)