Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\frac{1}{cos^2x}=\frac{sin^2x+cos^2x}{cos^2x}=1+\left(\frac{sinx}{cosx}\right)^2=1+tan^2x\)
\(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=1+\left(\frac{cosx}{sinx}\right)^2=1+cot^2x\)
d) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{5-2.2\sqrt{5}+4}-\sqrt{5+2.2\sqrt{5}+4}\)
\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)
\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)
\(=\sqrt{5}-2-\sqrt{5}-2=-4\)
g)\(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
\(=\dfrac{\sqrt{3}+\sqrt{9+2.3.\sqrt{2}+2}-\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}}{\sqrt{2}+\sqrt{5+2.\sqrt{5}.1+1}-\sqrt{5+2.\sqrt{5}.\sqrt{2}+2}}\)
\(=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\dfrac{\sqrt{3}+3+\sqrt{2}-\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\left(\sqrt{5}+1\right)-\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\dfrac{3}{1}=3\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)\(=\sqrt{9-2\cdot2\cdot\sqrt{5}}-\sqrt{9+2\cdot2\cdot\sqrt{5}}\)\(=\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}\)\(=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|\)\(=\left(2-\sqrt{5}\right)-\left(2+\sqrt{5}\right)\)\(=2-\sqrt{5}-2-\sqrt{5}=-2\sqrt{5}\)
\(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}=\dfrac{\sqrt{3}+\sqrt{11+2\cdot3\cdot\sqrt{2}}-\sqrt{5+2\cdot\sqrt{2}\cdot\sqrt{3}}}{\sqrt{2}+\sqrt{6+2\cdot\sqrt{5}}-\sqrt{7+2\cdot\sqrt{2}\cdot\sqrt{5}}}=\dfrac{\sqrt{3}+\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}+1}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}}=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}=\dfrac{\sqrt{3}+\left|3+\sqrt{2}\right|-\left|\sqrt{2}+\sqrt{3}\right|}{\sqrt{2}+\left|\sqrt{5}+1\right|-\left|\sqrt{2}+\sqrt{5}\right|}=\dfrac{\sqrt{3}+3+\sqrt{2}-\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{5}+1-\sqrt{2}-\sqrt{5}}=3\)
câu7:
có sinBAH=2/5
=> góc BAH=66 độ
tam giác BAH vuông tại H
=>góc B+góc BAH =90 độ
=>gócB=90-66=24 độ
áp dụng hệ thức về cạnh và góc trong tam giác vuông (tam giác ABC) ta có:
sinB*BC=AC
hay sin24*10=AC
=>AC=4,07cmn
6.
a. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=2\)
\(\Leftrightarrow\left|x-1\right|+\left|x-3\right|=2\) (*)
Xét \(x< 1\):
(*) \(\Leftrightarrow1-x+3-x=2\)
\(\Leftrightarrow-2x=-2\)
\(\Leftrightarrow x=1\left(ktm\right)\)
Xét \(1\le x< 3\) :
(*) \(\Leftrightarrow x-1+3-x=2\)
\(\Leftrightarrow2=2\left(vô.số.nghiệm\right)\)
Xét \(x\ge3\) :
(*) \(\Leftrightarrow x-1+x-3=2\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\left(tm\right)\)
Vậy pt đã cho có nghiệm thỏa \(1\le x\le3\).
b. \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (ĐK: \(1\ge x\ge\dfrac{1}{2}\))
\(\Leftrightarrow x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-\sqrt{\left(2x-1\right)^2}}=2\)
\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\)
\(\Leftrightarrow2\sqrt{\left(x-1\right)^2}=2-2x\)
\(\Leftrightarrow\left|x-1\right|=1-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1-x\\x-1=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\0=0\left(vô.số.nghiệm\right)\end{matrix}\right.\)
Vậy pt đã cho có nghiệm thỏa \(1\ge x\ge\dfrac{1}{2}\)
Bài 1 :
\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)
\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)
\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)
Bài 1:
a: ĐKXĐ: x>0; x<>1
b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)
c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)
d: Để |A|>A thì A>0
=>\(\sqrt{x}-1>0\)
hay x>1
a, d đi qua qua điểm A(1;0) <=> \(a+b=0\)(1)
d đi qua điểm B(0;9) <=> \(b=9\)(2)
Thay (2) vào (1) ta được : \(a+9=0\Leftrightarrow a=-9\)
Vậy a = -9 ; b = 9
b, Thay x = 5 ; y = 0 vào ptđt d ta được : \(5a+b=0\)(1)
Thay x = 0 ; y = 2 vào ptđt d ta được : \(b=2\)(2)
Thay (2) và (1) ta được : \(5a+2=0\Leftrightarrow a=-\frac{2}{5}\)
Vậy a = -2/5 ; b = 2
c, \(d//d_1\Leftrightarrow\hept{\begin{cases}a=3\\b\ne2\end{cases}}\)
d đi qua điểm A(-2;3) <=> \(-2a+b=3\)(*)
Thay a = 3 vào (*) ta được : \(-6+b=3\Leftrightarrow b=9\left(tmb\ne2\right)\)
Vậy a = 3 ; b = 9
d, mình chưa hiểu đề lắm, kiểu sai sai sao á
e, d đi qua điểm B(\(\sqrt{2}\);3) <=> \(\sqrt{2}a+b=3\)(**)
d // trục Ox <=> x = 0 <=> \(y=b\)<=> \(b=3\)
Thay vào (**) ta được : \(\sqrt{2}a+3=3\Leftrightarrow a=0\)
Vậy a = 0 ; b = 3