Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(\Leftrightarrow\left(x+2\right)\left(10x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{3}{10}\end{matrix}\right.\)
h: \(\dfrac{x^3+8}{x+2}=x^2-2x+4\)
i: \(\dfrac{27x^3-1}{9x^2+3x+1}=3x-1\)
\(\dfrac{3}{4}\left(x^2y\right)^2:\dfrac{1}{8}xy^2\\ =\dfrac{3}{4}x^4y^2:\dfrac{1}{8}xy^2\\ =\left(\dfrac{3}{4}:\dfrac{1}{8}\right)\left(x^4:x\right)\left(y^2:y^2\right)\\ =6x^3\)
\(\dfrac{3}{4}\left(x^2y\right)^2\div\dfrac{1}{8}xy^2\)
\(=\dfrac{3}{4}x^4y^2\div\dfrac{1}{8}xy^2\)
\(=6x^3\)
câu a, \(\dfrac{x}{x+1}\); \(\dfrac{x^2}{1-x}\); \(\dfrac{1}{x^2-1}\) (đk \(x\)≠ -1; 1)
\(x^2\) - 1 = ( \(x\) - 1).(\(x\) + 1)
\(\dfrac{x}{x+1}\) = \(\dfrac{x.\left(x-1\right)}{\left(x+1\right).\left(x-1\right)}\);
\(\dfrac{x^2}{1-x}\) = \(\dfrac{-x^2}{x-1}\)= \(\dfrac{-x^2.\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\dfrac{1}{x^2-1}\) = \(\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)
b, \(\dfrac{10}{x+2}\); \(\dfrac{5}{2x-4}\); \(\dfrac{1}{6-3x}\) (đk \(x\) ≠ -2; 2)
2\(x-4\) = 2.(\(x\) - 2); 6 - 3\(x\) = - 3.(\(x\) - 2)
\(\dfrac{10}{x+2}\) = \(\dfrac{10.2.3\left(x-2\right)}{2.3\left(x+2\right)\left(x-2\right)}\) = \(\dfrac{60\left(x-2\right)}{6\left(x-2\right)\left(x+2\right)}\)
\(\dfrac{5}{2x-4}\) = \(\dfrac{5.3\left(x+2\right)}{2.3\left(x-2\right).\left(x+2\right)}\) = \(\dfrac{15.\left(x+2\right)}{6.\left(x-2\right)\left(x+2\right)}\)
\(\dfrac{1}{6-3x}\) = \(\dfrac{-1}{3.\left(x-2\right)}\) = \(\dfrac{-1.\left(x+2\right)}{3.2.\left(x-2\right)\left(x+2\right)}\) = \(\dfrac{-2.\left(x+2\right)}{6.\left(x-2\right).\left(x+2\right)}\)
c, \(\dfrac{x}{2x-4}\); \(\dfrac{1}{2x+4}\) và \(\dfrac{3}{4-x^2}\) đk \(x\) ≠ 2; -2
\(\dfrac{x}{2x-4}\) = \(\dfrac{x}{2.\left(x-2\right)}\) = \(\dfrac{x.\left(x+2\right)}{2.\left(x-2\right).\left(x+2\right)}\)
\(\dfrac{1}{2x+4}\) = \(\dfrac{1}{2.\left(x+2\right)}\) = \(\dfrac{\left(x-2\right)}{2.\left(x+2\right).\left(x-2\right)}\)
\(\dfrac{3}{4-x^2}\) = \(\dfrac{-3}{\left(x-2\right)\left(x+2\right)}\) = \(\dfrac{-6}{2.\left(x-2\right)\left(x+2\right)}\)
Ta có:
AE vuông góc BD
CF vuông góc BD
=> AE//CF(1)
Xét 2 tam giác vuông AED và CFB có:
AD=BC
góc ADB = góc CBF ( 2 góc slt)
=> tam giác AED = tam giác CFB (ch-gn)
=> AE= CF (2)
Từ (1) và (2) => AECF là hbh ( đpcm)
Ta có: \(\left(x^{3n}+y^{3n}\right)\left(x^{3n}-y^{3n}\right)=-x^{6n}-y^{6n}\)
\(\Leftrightarrow x^{6n}-y^{6n}=-x^{6n}-y^{6n}\)
\(\Leftrightarrow n\in\varnothing\)
\(3.\)
\(a,\)
\(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow4x^2-12x+9-x^2-10x-25=0\)
\(\Leftrightarrow3x^2-22x-16=0\)
\(\Leftrightarrow3.\left(x-8\right)\left(x+\dfrac{2}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3=0\left(\text{vô lí}\right)\\x-8=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(S=\left\{8;-\dfrac{2}{3}\right\}\)
\(b,\)
\(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^3-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{1;2\right\}\)
\(4.\)
\(a,\)
\(16x^3y+\dfrac{1}{4}yz^3\)
\(=\dfrac{1}{4}y\left(64x^3+z^3\right)\)
\(=\dfrac{1}{4}y\left(4x+z\right)\left(16x^2-4xz+z^2\right)\)
\(b,\)
\(x^{m+4}-x^{m+3}-x-1\)
\(=x^m.x^4-x^m.x^3-x-1\)
\(=x^m.\left(x^4-x^3\right)-x-1\)
\(=x^m.x^3.\left(x+1\right)-\left(x+1\right)\)
\(=\left(x^{m+3}-1\right)\left(x+1\right)\)
3:
a: =>(2x-3-x-5)(2x-3+x+5)=0
=>(x-8)(3x+2)=0
=>x=8 hoặc x=-2/3
b: =>x^3-x^2-4(x-1)^2=0
=>x^2(x-1)-4(x-1)^2=0
=>(x-1)(x^2-4x+4)=0
=>x=1 hoặc x=2