K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2023

a) Hàm số trên nghịch biến trên R vì:

\(1< \sqrt{5}\Rightarrow1-\sqrt{5}< 0\) 

\(\Rightarrow\) hệ số \(a< 0\)

b) Khi \(x=1+\sqrt{5}\)

\(y=\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)-1\)

\(y=1^2-\left(\sqrt{5}\right)^2-1\)

\(y=1-5-1\)

\(y=-5\)

c) Khi \(y=\sqrt{5}\) khi và chỉ khi:

\(\left(1-\sqrt{5}\right)x-1=\sqrt{5}\)

\(\Leftrightarrow\left(1-\sqrt{5}\right)x=1+\sqrt{5}\)

\(\Leftrightarrow x=\dfrac{1+\sqrt{5}}{1-\sqrt{5}}\)

\(\Leftrightarrow x=\dfrac{\left(1+\sqrt{5}\right)^2}{1-5}\)

\(\Leftrightarrow x=-\dfrac{3+\sqrt{5}}{2}\)

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

Lời giải:

$A=1+\frac{1}{\sqrt{x}-3}$

Để $A$ max thì $\sqrt{x}-3$ phải dương và nhỏ nhất. 

Với $x$ nguyên, để $\sqrt{x}-3$ dương và nhỏ nhất thì $x=10$

Khi đó, $A_{\max}=1+\frac{1}{\sqrt{10}-3}=4+\sqrt{10}$

------------------

$B=1+\frac{1}{\sqrt{x}-2}$.

Lập luận tương tự phần a, ta thấy với $x$ nguyên không âm thì $\sqrt{x}-2$ đạt giá trị dương nhỏ nhất tại $x=5$

$\Rightarrow B_{\max}=1+\frac{1}{\sqrt{5}-2}=3+\sqrt{5}$

18 tháng 12 2021

\(=\sqrt{9y^4}=3y^2\)

Câu 1: 

Thay x=0 vào y=x+1, ta được:

y=0+1=1

Thay y=0 vào y=x+1, ta được:

x+1=0

hay x=-1

vậy: A(-1;0); B(0;1)

\(AB=\sqrt{\left(-1-0\right)^2+\left(0-1\right)^2}=\sqrt{2}\)

\(C_{OAB}=OA+OB+AB=2+\sqrt{2}\)

\(S_{OAB}=\dfrac{OA\cdot OB}{2}=\dfrac{1}{2}\)

loading...  loading...  

17 tháng 12 2021

a: \(x=2\sqrt{2}+2-2\sqrt{2}+2=4\)

Thay x=4 vào B, ta được:

\(B=\dfrac{2-3}{2+1}=\dfrac{-1}{3}\)

19 tháng 3 2022

\(K=\dfrac{2\sqrt{3a+1}+2\sqrt{3b+1}+2\sqrt{3c+1}}{2}\)\(\le\)\(\dfrac{3a+1+4+3b+1+4+3c+1+4}{4}=\dfrac{24}{4}=6\)

Vậy \(K_{max}=6\)

Dấu bằng xảy ra khi a=b=c=1