K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

Xét tứ giác ABCD có:

A + B + C + D = 360 độ(theo định lý)

Suy ra C = 360 độ - ( A + B + D)

                360 độ - 240 độ

                 120 độ

Vậy...

18 tháng 10 2023

Bạn thêm ký hiệu góc vào giúp mình.

5 tháng 9 2023

4. \(x^2-3x+xy-3y=0\)

\(\Leftrightarrow x\left(x-3\right)+y\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-y\end{matrix}\right.\)

5. \(x^2-8x-3x+24=0\)

\(\Leftrightarrow x\left(x-8\right)-3\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=3\end{matrix}\right.\)

6. \(\left(x-2\right)^2-5\left(2-x\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

7. \(3x\left(x-1\right)-x^2+2x-1=0\)

\(\Leftrightarrow3x\left(x-1\right)-\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[3x-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

8. \(x^2\left(x-3\right)+18-6x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-6\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x^2-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\pm\sqrt{6}\end{matrix}\right.\)

10. \(\left(x-5\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[\left(x-5\right)-\left(x-2\right)\right]\left[\left(x-5\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-5-x+2\right)\left(x-5+x-2\right)=0\)

\(\Leftrightarrow-3\left(2x-7\right)=0\)

\(\Leftrightarrow2x-7=0\)

\(\Leftrightarrow x=\dfrac{7}{2}\)

12. \(x^2\left(x-3\right)-4x+12=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=3\end{matrix}\right.\)

14. \(3x^2-7x-10=0\)

\(\Leftrightarrow3x^2+3x-10x-10=0\)

\(\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{10}{3}\end{matrix}\right.\)

#Urushi

4: x^2-3x+xy-3y=0

=>x(x-3)+y(x-3)=0

=>(x-3)(x+y)=0

=>x=3 và x+y=0

=>x=3 và y=-3

6: (x-2)^2-5(2-x)=0

=>(x-2)^2+5(x-2)=0

=>(x-2)(x-2+5)=0

=>(x-2)(x+3)=0

=>x=-3 hoặc x=2

8: x^2(x-3)+18-6x=0

=>x^2(x-3)-6(x-3)=0

=>(x-3)(x^2-6)=0

=>x=3 hoặc \(x=\pm\sqrt{6}\)

10: (x-5)^2-(x-2)^2=0

=>(x-5-x+2)(x-5+x-2)=0

=>-3(2x-7)=0

=>2x-7=0

=>x=7/2

12: x^2(x-3)-4x+12=0

=>x^2(x-3)-4(x-3)=0

=>(x-3)(x^2-4)=0

=>(x-3)(x-2)(x+2)=0

=>\(x\in\left\{3;2;-2\right\}\)

14: 3x^2-7x-10=0

=>3x^2-10x+3x-10=0

=>(3x-10)(x+1)=0

=>x=10/3 hoặc x=-1

\(=\dfrac{x^2-4y}{xy}\cdot\dfrac{x^2}{x-y}=\dfrac{x\left(x^2-4y\right)}{y\left(x-y\right)}\)

Bài 3: 

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC

AH chung

Do đó: ΔABH=ΔACH

b: Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)

\(\widehat{ACN}+\widehat{ACB}=180^0\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

\(P=\dfrac{x^3+8y^3}{4^3+4^3}=\dfrac{\left(x+2y\right)^3-3\cdot x\cdot2y\cdot\left(x+2y\right)}{128}\)

\(=\dfrac{\left(-8\right)^3-6\cdot\left(-6\right)\cdot\left(-8\right)}{128}=\dfrac{128-6\cdot48}{128}=-\dfrac{5}{4}\)

1: Ta có: \(A=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1}{x^2+5x+5}\)

\(=\dfrac{\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1}{x^2+5x+5}\)

\(=\dfrac{\left(x^2+5x+5\right)^2}{x^2+5x+5}\)

\(=x^2+5x+5\)

24 tháng 11 2021

câu hỏi đâu

24 tháng 11 2021

https://www.youtube.com/channel/UCUbQt-KjcTI7_W41LqBBwtg

Sửa đề: \(\dfrac{7}{x+5}-\dfrac{x}{5-x}=\dfrac{-x^2}{25-x^2}\)

\(\Leftrightarrow7\left(x-5\right)+x\left(x+5\right)=x^2\)

\(\Leftrightarrow7x-35+5x=0\)

=>12x=35

hay x=35/12

a: Ta có: \(8x\left(x-2017\right)-2x+4034=0\)

\(\Leftrightarrow\left(x-2017\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

c: Ta có: \(4-x=2\left(x-4\right)^2\)

\(\Leftrightarrow2\left(x-4\right)^2+x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{2}\end{matrix}\right.\)