Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái này áp dụng hệ thức lượng thôi bạn
AH=căn 6^2-4,8^2=3,6cm
=>AC=6^2/3,6=10cm
\(3x^4+4x^3-3x^2-2x+1=0\)
\(\Leftrightarrow3x^4+x^3-x^2+3x^3+x^2-x-3x^2-x+1=0\)
\(\Leftrightarrow x^2\left(3x^2+x-1\right)+x\left(3x^2+x-1\right)-\left(3x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x-1\right)\left(3x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+x-1=0\left(1\right)\\3x^2+x-1=0\left(2\right)\end{cases}}\)
- \(\Delta_{\left(1\right)}=1^2-\left(-4\left(1.1\right)\right)=5\)
\(\Leftrightarrow x_{1,2}=\frac{-1\pm\sqrt{5}}{2}\left(tm\right)\)
- \(\Delta_{\left(2\right)}=1^2-\left(-4\left(3.1\right)\right)=13\)
\(x_{1,2}=\frac{-1\pm\sqrt{13}}{6}\left(tm\right)\)
Nếu bạn thiếu số 2 bên cạnh $\sqrt{2x^2+5x+3}$ thì có thể tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/tim-x-sao-cho-sqrt2x3sqrtx13x2sqrt2x25x3-16.235781793134
\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)
\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)
\(x^4-8x^3+21x^2-24x+9=0\)
\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))
\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
\(5x^4-2x^2-3x^2\sqrt{x^2+2}=4\)
Đặt \(\sqrt{x^2+2}=t>0\Rightarrow x^2=t^2-2\)
\(5\left(t^2-2\right)^2-2\left(t^2-2\right)-3t\left(t^2-2\right)-4=0\)
\(\Leftrightarrow5t^4-3t^3-22t^2+6t+20=0\)
Nhận thấy \(t=0\) không phải nghiệm, chia 2 vế cho \(t^2\)
\(\Rightarrow5\left(t^2+\frac{4}{t^2}\right)-3\left(t-\frac{2}{t}\right)-22=0\)
Đặt \(t-\frac{2}{t}=a\Rightarrow t^2+\frac{4}{t^2}=a^2+4\)
\(\Rightarrow5\left(a^2+4\right)-3a-22=0\Leftrightarrow5a^2-3a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{2}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t-\frac{2}{t}=1\\t-\frac{2}{t}=-\frac{2}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t^2-t-2=0\\t^2+\frac{2}{5}t-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\\t=\frac{\sqrt{51}-1}{5}\\t=\frac{-\sqrt{51}-1}{5}\left(l\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2}=2\\\sqrt{x^2+2}=\frac{\sqrt{51}-1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\x^2=\frac{2-2\sqrt{51}}{25}< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=\pm\sqrt{2}\)