Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(y'=6x^2+6\left(m-1\right)x+6\left(m-2\right)=6\left(x+1\right)\left(x+m-2\right)\)
\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-m+2\end{matrix}\right.\)
Phương trình nghịch biến trên đoạn có độ dài lớn hơn 3 khi:
\(\left|-1-\left(-m+2\right)\right|>3\)
\(\Leftrightarrow\left|m-3\right|>3\Rightarrow\left[{}\begin{matrix}m>6\\m< 0\end{matrix}\right.\)
2.
\(y'=-3x^2+6x+m-1\)
\(\Delta'=9+3\left(m-1\right)>0\Rightarrow m>-2\)
Gọi \(x_1;x_2\) là 1 nghiệm của pt \(-3x^2+6x+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=\dfrac{-m+1}{3}\end{matrix}\right.\)
Hàm đồng biến trên đoạn có độ dài lớn hơn 1 khi:
\(\left|x_1-x_2\right|>1\)
\(\Leftrightarrow\left(x_1-x_2\right)^2>1\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2>1\)
\(\Leftrightarrow4-\dfrac{-4m+4}{3}>1\)
\(\Rightarrow m>-\dfrac{5}{4}\) \(\Rightarrow m=-1\)
Có đúng 1 giá trị nguyên âm của m thỏa mãn
3.
\(y'=x^2+6\left(m-1\right)x+9\)
\(\Delta'=9\left(m-1\right)^2-9>0\Rightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\left(m-1\right)\\x_1x_2=9\end{matrix}\right.\)
\(\left|x_1-x_2\right|=6\sqrt{3}\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=108\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=108\)
\(\Leftrightarrow36\left(m-1\right)^2-36=108\)
\(\Rightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
Có 1 giá trị nguyên âm của m thỏa mãn
Lời giải:
Bài 16
Khai triển:
\(F(x)=\int \frac{(x-1)^3}{2x^2}dx=\int \frac{x^3-3x^2+3x-1}{2x^2}dx=\int \frac{x}{2}dx-\int\frac{3}{2}dx+\int\frac{3}{2x}dx-\int\frac{dx}{2x^2}\)
Cụ thể có:
\(\int \frac{x}{2}dx=\frac{x^2}{4};\int\frac{3}{2}dx=\frac{3x}{2};\int\frac{3dx}{2x}=\frac{3}{2}\ln|x|;\int\frac{dx}{2x^2}=-\frac{1}{2x}\)
Do đó \(F(x)=\frac{x^2}{4}-\frac{3x}{2}+\frac{3\ln|x|}{2}+\frac{1}{2x}+c\)
Phương án D.
Bài 18:
Vì \(\int f(x)dx=\sin 2x\cos 2x\Rightarrow f(x)=(\sin 2x\cos 2x)'\)
\(\Leftrightarrow f(x)=(\frac{\sin 4x}{2})'=2\cos 4x\)
(không có đáp án đúng?)
Câu 36
Đặt \(\left\{\begin{matrix} u=\ln (\ln x)\\ dv=\frac{dx}{x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{1}{x\ln x}dx\\ v=\int\frac{dx}{x}=\ln x\end{matrix}\right.\)
Khi đó \(I=\ln x\ln(\ln x)-\int\ln x\frac{1}{x\ln x}dx=\ln x\ln(\ lnx)-\int\frac{dx}{x}=\ln x\ln (\ln x)-\ln x+c\)
Đáp án C
Câu 69:
Ta có:
\(f(x)+f(y)=1\Leftrightarrow \frac{9^x}{9^x+m^2}+\frac{9^y}{9^y+m^2}=1\)
\(\Leftrightarrow \frac{9^x}{9^x+m^2}=1-\frac{9^y}{9^y+m^2}=\frac{m^2}{9^y+m^2}\)
\(\Leftrightarrow 9^{x+y}=m^4\Leftrightarrow (3^{x+y}-m^2)(3^{x+y}+m^2)=0\)
\(\Rightarrow 3^{x+y}=m^2\) (do \(3^{x+y}>0; m^2\geq 0\Rightarrow 3^{x+y}+m^2>0\) ) (1)
------------------------------------------------
Tiếp theo: \(e^{x+y}\leq e(x+y)\Leftrightarrow e^{x+y-1}\leq x+y\)
Đặt \(x+y=k\Rightarrow e^{k-1}\leq k\Leftrightarrow e^{k-1}-k\leq 0\)
Đặt \(e^{k-1}-k=f(k)\Rightarrow f(k)\leq 0(*)\)
Có: \(f'(k)=e^{k-1}-1=0\Leftrightarrow k=1\)
Lập bảng biến thiên ta thấy rằng \(f(k)_{\min}=f(1)=0\) hay \(f(k)\geq 0(**)\)
Từ \((1);(2)\Rightarrow f(k)=0\) hay \(k=1\Leftrightarrow x+y=1\)
Thay vào (1) ta có \(m^2=3\Leftrightarrow m=\pm \sqrt{3}\)
Vậy có 2 giá trị m thỏa mãn. đáp án D
Câu 70:
Để hai pt lần lượt có hai nghiệm phân biệt thì
\(\Delta _1=\Delta_2=b^2-20a>0\Leftrightarrow b^2> 20a\) (1)
Khi đó, áp dụng hệ thức Viete ta có:
Đối với PT 1: \(\ln x_1+\ln x_2=\frac{-b}{a}\Leftrightarrow \ln (x_1x_2)=\frac{-b}{a}\)
\(\Leftrightarrow x_1x_2=e^{\frac{-b}{a}}\)
Đối với PT 2: \(\log x_1+\log x_2=\frac{-b}{5}\Leftrightarrow \log (x_1x_2)=\frac{-b}{5}\)
\(\Leftrightarrow x_3x_4=10^{\frac{-b}{5}}\)
Vì \(x_1x_2> x_3x_4\Leftrightarrow e^{\frac{-b}{a}}>10^{\frac{-b}{5}}\)
\(\Leftrightarrow 10^{\frac{-b}{a\ln 10}}> 10^{\frac{-b}{5}}\)
\(\Leftrightarrow \frac{-b}{a\ln 10}>\frac{-b}{5}\Leftrightarrow a>\frac{5}{\ln 10}\)
\(\Leftrightarrow a> 2,71...\Rightarrow a\geq 3\) (vì a nguyên dương)
Theo (1) ta có: \(b^2>20a\geq 60\Rightarrow b\geq 8\) (do b nguyên dương)
Vậy \(2a+3b\geq 2.3+3.8\Leftrightarrow 2a+3b\geq 30\)
Đáp án A
Câu 22)
Bạn dùng nguyên hàm từng phần thôi
Ta có \(I=\int x(1-x)e^{-x}dx=(ax^2+bx+c)e^{-x}\)
Đặt \(\left\{\begin{matrix} u=1-x\\ dv=xe^{-x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=-dx\\ v=\int xe^{-x}dx\end{matrix}\right.\)
Tại $v$ cũng áp dụng nguyên hàm từng phần, suy a \(v=-xe^{-x}-e^{-x}\)
Do đó \(I=(-xe^{-x}-e^{-x})(1-x)-\int (x+1)e^{-x}dx\)
\(I=(x^2-1)e^{-x}-v-\int e^{-x}dx\)
\(I=(x^2-1)e^{-x}-(-xe^{-x}-e^{-x})-(-e^{-x})\)
\(I=e^{-x}(x^2+x+1)+c\)
Do đó \(a=b=c=1\rightarrow a+b+c=3\)
Câu 23:
Câu này y hệt như câu 22. Bạn chỉ cần tìm $a,b,c$ sao cho
\(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(ax^2+bx+c)\sqrt{2x-3}\)
Gợi ý: Đặt \(\sqrt{2x-3}=t\), ta sẽ tìm được \(\int\frac{20x^2-30x+7}{\sqrt{2x-3}}dx=(4x^2-2x+1)\sqrt{2x-3}\)
\(\Rightarrow a=4,b=-2,c=1\). Đáp án C
Câu 25:
Đạo hàm của $f(x)=\frac{1}{2x-1}$ thì nghĩa là \(f(x)=\int\frac{1}{2x-1}dx\)
\(\Leftrightarrow f(x)=\frac{1}{2}\int\frac{d(2x-1)}{2x-1}=\frac{1}{2}\ln|2x-1|+c\)
Có \(f(1)=1\leftrightarrow c=1\). Do đó \(f(x)=\frac{1}{2}\ln|2x-1|+1\rightarrow f(5)=\frac{1}{2}\ln 9+1=\ln 3+1\)
Đáp án D
Câu 31 thử ĐA
Câu 33: có công thức
Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d
\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D
Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh
bài không khó nhưng không hiểu là tìm m để pt có nghiệm hay sao??
Câu 62)
Để \(\frac{z+i}{\overline{z}-i}=\frac{a+i(b+1)}{a-i(b-1)}\in\mathbb{R}\Leftrightarrow \frac{[a+i(b+1)][(a+i(b-1)]}{[a-i(b-1)][a+i(b-1)]}\in\mathbb{R}\)
\(\left\{\begin{matrix} [a+i(b+1)][a+i(b-1)]\in\mathbb{R}\\ a^2+(b-1)^2\neq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} ab=0\\ a^2+(b-1)^2\neq 0\end{matrix}\right.\)
Nghĩa là tập hợp các điểm biểu diễn số phức $z$ nằm trên trục hoành và trục tung từ điểm \((0;1)\)
Đáp án C.
Câu 63)
Cần có \(\left\{\begin{matrix} \frac{x+i(y+1)}{x+i(y-1)}\in\mathbb{R}(1)\\ \frac{x+i(y+1)}{x+i(y-1)}<0(2)\end{matrix}\right.\)
Cái \((1)\Leftrightarrow \frac{[x+i(y+1)][x-i(y-1)]}{[x+i(y-1)][x-i(y-1)]}\in\mathbb{R}\Leftrightarrow \left\{\begin{matrix} x=0\\ x^2+(y-1)^2\neq 0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=0\\ y\neq 1\end{matrix}\right.\)
Thay $x=0$ vào \((2)\Leftrightarrow \frac{y^2-1}{(y-1)^2}<0\Leftrightarrow y^2<1\Rightarrow -1< y<1\)
Đáp án B
đặt Z=a+bi
bài 4: \(\left\{{}\begin{matrix}a=2\sqrt{3}\\r=\sqrt{a^2+b^2}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\sqrt{3}\\b=\pm2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}Z=2\sqrt{3+2i}\\Z=2\sqrt{3}-2i\end{matrix}\right.\)
bài 5:tương tự \(\left\{{}\begin{matrix}b=6\\a=\pm8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}Z=8+6i\\Z=-8+6i\end{matrix}\right.\)
bai 6: Z= a+bi \(\Rightarrow\)\(\overline{Z}=a-bi\)
bài ra \(\Rightarrow\left\{{}\begin{matrix}a=-12\\a-3b+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-12\\b=\dfrac{-8}{3}\end{matrix}\right.\)
vay Z= -12-\(\dfrac{8}{3}i\)
1+1=2
1+2=3
1+3=4