Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow4}\dfrac{\sqrt{x+5}-3}{x-4}=\lim\limits_{x\rightarrow4}\dfrac{\left(\sqrt{x+5}-3\right)\left(\sqrt{x+5}+3\right)}{\left(x-4\right)\left(\sqrt{x+5}+3\right)}\)
\(=\lim\limits_{x\rightarrow4}\dfrac{x-4}{\left(x-4\right)\left(\sqrt{x+5}+3\right)}=\lim\limits_{x\rightarrow4}\dfrac{1}{\sqrt{x+5}+3}=\dfrac{1}{3+3}=\dfrac{1}{6}\)
\(\left\{{}\begin{matrix}u_3=13\\u_5=23\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1+2d=13\\u_1+4d=23\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u_1=3\\d=5\end{matrix}\right.\)
Hàm \(f\left(x\right)\) ko xác định khi \(x+4=0\Rightarrow x=-4\)
\(\Rightarrow\) Hàm gián đoạn tại \(x=-4\)
21:
\(y'=\dfrac{\left(x^2-3x+5\right)'\left(x+2\right)-\left(x+2\right)'\left(x^2-3x+5\right)}{\left(x+2\right)^2}\)
\(=\dfrac{\left(2x-3\right)\left(x+2\right)-\left(x^2-3x+5\right)}{\left(x+2\right)^2}\)
\(=\dfrac{2x^2+4x-3x-6-x^2+3x-5}{\left(x+2\right)^2}=\dfrac{x^2+4x-11}{\left(x+2\right)^2}\)
17:
Khi x<>0 thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}\dfrac{1+4x-1}{\sqrt{1+4x}+1}\cdot\dfrac{1}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{4}{\sqrt{1+4x}+1}=\dfrac{4}{1+1}=\dfrac{4}{2}=2\)
=>Chọn B
Câu 2:
SHTQ là: \(C^k_{12}\cdot\left(2x\right)^{12-k}\cdot\left(-\dfrac{1}{x^2}\right)^k=C^k_{12}\cdot\left(-1\right)^k\cdot2^{12-k}\cdot x^{12-3k}\)
Số hạng ko chứa x tương ứng với 12-3k=0
=>k=4
=>Số hạng ko chứa x là \(C^4_{12}\cdot\left(-1\right)^4\cdot2^{12-4}=126720\)
34:
(SBA) giao (SCD)=d đi qua S, d//AB//CD
=>d vuông góc SA,d vuông góc SD
=>(SAB;SCD)=(SA;SD)
tan ASD=AD/AS=1/căn 3
=>góc ASD=30 độ
Không thể tính được giá trị cụ thể, còn tùy thuộc hình dạng của đáy A'B'C'D'
Góc giữa A'C' và C'D' là \(\widehat{A'C'D'}\) nếu nó là góc nhọn hoặc góc bù của nó nếu nó là góc tù
5.
\(y=\dfrac{2x-1}{1-x}\Rightarrow y'=\dfrac{\left(2x-1\right)'\left(1-x\right)-\left(1-x\right)'\left(2x-1\right)}{\left(1-x\right)^2}\)
\(=\dfrac{2\left(1-x\right)+\left(2x-1\right)}{\left(1-x\right)^2}=\dfrac{1}{\left(1-x\right)^2}=\dfrac{1}{\left(x-1\right)^2}\)
9.
\(\lim\limits\dfrac{2n^2+4}{3-n^2}=\lim\dfrac{2+\dfrac{4}{n^2}}{\dfrac{3}{n^2}-1}=\dfrac{2+0}{0-1}=-2\)