K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2021

1. \(y'=6x^2+6x\Rightarrow y'\left(1\right)=12\)

Đáp án B

2. \(y'=\dfrac{7}{\left(x+3\right)^2}\Rightarrow y'\left(1\right)=\dfrac{7}{16}\) (A)

3. \(y'=8x^3+9x^2-3\Rightarrow y'\left(3\right)=294\)

Tất cả các đáp án đều sai

4. Tiếp tục là 1 câu đề bài sai

Hàm số không xác định tại \(x=1\Rightarrow\) không liên tục tại \(x=1\Rightarrow\) không tồn tại đạo hàm tại \(x=1\)

5.

\(f'\left(x\right)=7x^6+20x^4+6x\)

\(\Rightarrow f'\left(2\right)=780\)

6.

\(y'=\dfrac{3}{\left(x+1\right)^2}\)

\(\Rightarrow y'\left(2\right)=\dfrac{1}{3}\) ; \(y\left(2\right)=1\)

Phương trình tiếp tuyến:

\(y=\dfrac{1}{3}\left(x-2\right)+1\Leftrightarrow y=\dfrac{1}{3}x+\dfrac{1}{3}\)

NV
19 tháng 4 2022

35.

\(y'=5cos^4\left(2-3x\right).\left[cos\left(2-3x\right)\right]'\)

\(=5cos^4x.\left(-sin\left(2-3x\right)\right).\left(2-3x\right)'\)

\(=15cos^4\left(2-3x\right).sin\left(2-3x\right)\)

\(\Rightarrow\left\{{}\begin{matrix}m=15\\n=4\end{matrix}\right.\) \(\Rightarrow m+n=19\)

36.

\(U_2=2-\dfrac{1}{2}=\dfrac{3}{2}\) ; \(u_3=2-\dfrac{1}{\dfrac{3}{2}}=\dfrac{4}{3}\) ; \(u_5=2-\dfrac{1}{\dfrac{4}{3}}=\dfrac{5}{4}\)

\(\Rightarrow\) Quy nạp được \(u_n=\dfrac{n+1}{n}\)

\(\Rightarrow\lim\left(u_n\right)=\lim\dfrac{n+1}{n}=1\)

37.

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x^2+7}-4}{2x-6}=\lim\limits_{x\rightarrow3}\dfrac{x^2-9}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(\sqrt{x^2+7}+4\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{x+3}{2\left(\sqrt{x^2+7}+4\right)}=\dfrac{6}{2\left(\sqrt{9+7}+4\right)}=\dfrac{3}{8}\)

Hàm liên tục trên R khi:

\(\dfrac{3}{8}=1-2m\Rightarrow m=\dfrac{5}{16}\in\left(0;1\right)\)

15 tháng 5 2022

undefined

15 tháng 5 2022

undefined

NV
14 tháng 4 2022

23.

Gọi M là trung điểm BC

Trong mp (SAM), từ A kẻ \(AH\perp SM\) (1)

Ta có: \(AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác đều)

Lại có \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)

\(\Rightarrow BC\perp\left(SAM\right)\Rightarrow BC\perp SH\)

(1);(2) \(\Rightarrow SH\perp\left(SBC\right)\)

\(\Rightarrow SH=d\left(A;\left(SBC\right)\right)\)

\(AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

Hệ thức lượng trong tam giác vuông SAM:

\(AH=\dfrac{AM.SA}{\sqrt{AM^2+SA^2}}=\dfrac{a\sqrt{66}}{11}\)

undefined

NV
14 tháng 4 2022

24.

Gọi D, E lần lượt là trung điểm BC, AC

\(\Rightarrow\) DE là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}DE\perp AC\\DE=\dfrac{1}{2}AB\end{matrix}\right.\)

SBC đều \(\Rightarrow SD\perp BC\Rightarrow SD\perp\left(ABC\right)\)

\(\Rightarrow SD\perp AC\)

\(\Rightarrow AC\perp\left(SDE\right)\Rightarrow\widehat{SED}\) là góc giữa (SAC) và (ABC)

\(AB=BC.cos\widehat{ABC}=a.cos30^0=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow DE=\dfrac{1}{2}AB=\dfrac{a\sqrt{3}}{4}\)

\(SD=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)

\(tan\varphi=tan\widehat{SED}=\dfrac{SD}{DE}=2\)

undefined

NV
15 tháng 3 2022

\(AB\perp\left(BCD\right)\Rightarrow BD\) là hình chiếu vuông góc của AD lên (BCD)

\(\Rightarrow\widehat{ADB}\) là góc giữa AD và (BCD)

\(tan\widehat{ADB}=\dfrac{AB}{BD}=\sqrt{3}\Rightarrow\widehat{ADB}=60^0\)

NV
17 tháng 4 2022

38.

\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)

\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)

\(y\left(2\right)=-\dfrac{11}{3}\)

Phương trình d:

\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)

Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn

NV
17 tháng 4 2022

39.

Gọi E là trung điểm AB, F là trung điểm CD

Từ E kẻ EH vuông góc SF (H thuộc SF)

Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)

\(\Rightarrow SE\perp CD\)

\(EF||AD\Rightarrow EF\perp CD\)

\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)

\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)

Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)

\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)

Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)

NV
17 tháng 4 2022

24.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

25.

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABC\right)\Rightarrow\widehat{SAO}\) là góc giữa SA và (ABC)

\(AO=\dfrac{2}{3}.\dfrac{1.\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\)

\(\Rightarrow cos\widehat{SAO}=\dfrac{AO}{SA}=\dfrac{1}{2}\Rightarrow\widehat{SAO}=60^0\)

26.

\(dy=y'dx=\left(x^2\right)'dx=2xdx\)

NV
19 tháng 4 2022

Gọi E là giao điểm HK và AC

\(\Rightarrow E\) là trung điểm OC \(\Rightarrow OE=\dfrac{1}{2}OC=\dfrac{1}{2}OA\)

\(\Rightarrow d\left(E;\left(SBD\right)\right)=\dfrac{1}{2}d\left(A;\left(SBD\right)\right)\)

HK là đường trung bình tam giác BCD \(\Rightarrow HK||BD\)

\(\Rightarrow d\left(HK;SD\right)=d\left(HK;\left(SBD\right)\right)=d\left(E;\left(SBD\right)\right)=\dfrac{1}{2}d\left(A;\left(SBD\right)\right)\)

Từ A kẻ \(AF\perp SO\Rightarrow AF\perp\left(SBD\right)\Rightarrow AF=d\left(A;\left(SBD\right)\right)\)

\(AO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\)

Hệ thức lượng: 

\(AF=\dfrac{SA.AO}{\sqrt{SA^2+AO^2}}=\dfrac{2a}{3}\)

\(\Rightarrow d\left(HK;SD\right)=\dfrac{1}{2}AF=\dfrac{a}{3}\)

NV
19 tháng 4 2022

undefined

NV
29 tháng 3 2022

\(f\left(x\right)=x^5+x^3\Rightarrow f'\left(x\right)=5x^4+3x^2\)

\(f'\left(2\right)=5.2^4+3.2^2=92\)

29 tháng 3 2022

\(f\left(x\right)=x^5+x^3\)

=>\(f'\left(x\right)=5x^4+3x^2\)

=>\(f'\left(2\right)=5.2^4+3.2^2\)

\(f'\left(2\right)=5.16+3.4=92\)