Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
38.
\(y'=2x^2-8x+9=2\left(x-2\right)^2+1\ge1\)
\(\Rightarrow\) Tiếp tuyến có hệ số góc nhỏ nhất bằng 1 khi \(x_0-2=0\Rightarrow x_0=2\)
\(y\left(2\right)=-\dfrac{11}{3}\)
Phương trình d:
\(y=1\left(x-2\right)-\dfrac{11}{3}=x-\dfrac{17}{3}\)
Thay tọa độ 4 điểm của đáp án, chỉ có \(P\left(5;-\dfrac{2}{3}\right)\) thỏa mãn
39.
Gọi E là trung điểm AB, F là trung điểm CD
Từ E kẻ EH vuông góc SF (H thuộc SF)
Do tam giác SAB đều \(\Rightarrow SE\perp AB\Rightarrow SE\perp\left(ABCD\right)\)
\(\Rightarrow SE\perp CD\)
\(EF||AD\Rightarrow EF\perp CD\)
\(\Rightarrow CD\perp\left(SEF\right)\) \(\Rightarrow CD\perp EH\)
\(\Rightarrow EH\perp\left(SCD\right)\Rightarrow EH=d\left(E;\left(SCD\right)\right)\)
Lai có: \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(E;\left(SCD\right)\right)=EH\)
\(SE=\dfrac{AB\sqrt{3}}{2}=\dfrac{\sqrt{3}}{2}\) ; \(EF=AD=1\)
Hệ thức lượng: \(d=HE=\dfrac{SE.EF}{\sqrt{SE^2+EF^2}}=\dfrac{\sqrt{21}}{7}\)
38.
Gọi T là biến cố "Trong 3 lần bắn, xạ thủ bắn trúng bia ít nhất 1 lần".
\(\Rightarrow\overline{T}\) là biến cố "Trong 3 lần bắn, xạ thủ không bắn trúng bia phát nào".
\(\Rightarrow P\left(\overline{T}\right)=0,4.0,4.0,4=0,064\)
\(\Rightarrow P\left(T\right)=1-P\left(\overline{T}\right)=0,936\)
37.
Ta đi tìm số các số tự nhiên lẻ có 5 chữ số đôi một khác nhau lập từ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Số tự nhiên có 5 chữ số có dạng \(\overline{abcde}\).
e có 5 cách chọn.
\(\overline{abcd}\) có \(A^4_9-A^3_8\) cách lập.
\(\Rightarrow\) Lập được \(5\left(A^4_9-A^3_8\right)\) số tự nhiên lẻ có 5 chữ số đôi một khác nhau.
\(\Rightarrow\) Lập được \(\left(A^5_{10}-A^4_9\right)-5\left(A^4_9-A^3_8\right)=13776\) số tự nhiên chẵn có 5 chữ số thỏa mãn yêu cầu bài toán.
11.
Do \(\lim\limits_{x\rightarrow2^-}\left(1-x^2\right)=1-2^2=-3< 0\)
\(\lim\limits_{x\rightarrow2^-}\left(x-2\right)=0\)
Và: \(x-2< 0\) khi \(x< 2\)
\(\Rightarrow\lim\limits_{x\rightarrow2^-}\dfrac{1-x^2}{x-2}=+\infty\)
6.
SAB cân tại S \(\Rightarrow SH\perp AB\)
Mà \(\left\{{}\begin{matrix}AB=\left(SAB\right)\cap\left(ABCD\right)\\\left(SAB\right)\perp\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SH\perp\left(ABCD\right)\)
Hay SH alf đường cao của chóp
\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{mx^2-\left(m+3\right)x+3}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)\left(mx-3\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left(mx-3\right)=m-3\)
\(f\left(1\right)=m^2-15\)
Hàm liên tục tại \(x=1\) khi:
\(m-3=m^2-15\Rightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)
\(4^2+\left(-3\right)^2=25\)
\(y'=3x^2-2\)
hệ số góc tiếp tuyến tại điểm có hoành độ \(x_0=-1\) là \(y'\left(-1\right)\)
\(y'\left(-1\right)=3.\left(-1\right)^2-2=1\)
14.
A là khẳng định sai, CD không vuông góc SB
(Vì nếu \(CD\perp SB\) (1); do \(SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\) (2)
(1);(2) \(\Rightarrow CD\perp\left(SAB\right)\Rightarrow CD\perp AB\) (vô lý do \(CD||AB\))