K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

\(I\in d:\left\{{}\begin{matrix}x=-1+2t\\y=2t\\z=-4+t\end{matrix}\right.\left(t\in Z\right)\)

\(\Rightarrow I\left(-1+2t;2t;-4+t\right)\) và \(M\left(4;5;1\right)\)

\(\Rightarrow\overrightarrow{IM}=\left(5-2t;5-2t;5-t\right)\)

\(\Rightarrow R^2=IM^2=\left(5-2t\right)^2+\left(5-2t\right)^2+\left(5-t\right)^2\)

\(d\left(I;\left(P\right)\right)=\dfrac{\left|2\cdot\left(-1+2t\right)+2\cdot2t-\left(-4+t\right)\right|}{\sqrt{2^2+2^2+\left(-1\right)^2}}=\dfrac{\left|7t+2\right|}{3}\)

\(\Rightarrow d^2\left(I;\left(P\right)\right)=\dfrac{\left(7t+2\right)^2}{9}\)

\(R^2=d^2\left(I;\left(P\right)\right)+r^2\)

\(\Rightarrow\left(5-2t\right)^2+\left(5-2t\right)^2+\left(5-t\right)^2=\dfrac{\left(7t+2\right)^2}{9}+25\)

\(\Leftrightarrow16t^2-239t+223=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{223}{16}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow I\left(1;2;-3\right)\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=-3\end{matrix}\right.\)

Vậy \(a+b+c=0\)

Chọn B.

AH
Akai Haruma
Giáo viên
10 tháng 8 2017

Bài 3.9:

a)

\(\int ^{1}_{0}(y^3+3y^2-2)dy=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{y^4}{4}+y^3-2y \right )=\frac{-3}{4}\)

b) \(\int ^{4}_{1}\left (t+\frac{1}{\sqrt{t}}-\frac{1}{t^2}\right)dt=\left.\begin{matrix} 4\\ 1\end{matrix}\right|\left ( \frac{t^2}{2}+2\sqrt{t}+\frac{1}{t} \right )=\frac{35}{4}\)

d) Ta có:

\(\int ^{1}_{0}(3^s-2^s)^2ds=\int ^{1}_{0}(9^s+4^s-2.6^s)ds=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{9^s}{\ln 9}+\frac{4^s}{\ln 4}-\frac{2.6^s}{\ln 6} \right )\)

\(=\frac{8}{\ln 9}+\frac{3}{\ln 4}-\frac{10}{\ln 6}\)

h)

Ta có \(\int ^{\frac{5\pi}{4}}_{\pi}\frac{\sin x-\cos x}{\sqrt{1+\sin 2x}}dx=\int ^{\frac{5\pi}{4}}_{\pi}\frac{\sin x-\cos x}{\sqrt{\sin^2x+\cos^2x+2\sin x\cos x}}dx\)

\(=\int ^{\frac{5\pi}{4}}_{\pi}\frac{-d(\sin x+\cos x)}{|\sin x+\cos x|}=\int ^{\frac{5\pi}{4}}_{\pi}\frac{d(\sin x+\cos x)}{\sin x+\cos x}=\left.\begin{matrix} \frac{5\pi}{4}\\ \pi\end{matrix}\right|\ln |\sin x+\cos x|=\ln (\sqrt{2})\)

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Bài 3.10:

a)

Đặt \(t=1-x\) thì:

\(\int ^{2}_{1}x(1-x)^5dx=\int ^{-1}_{0}t^5(1-t)d(1-t)=\int ^{0}_{-1}t^5(1-t)dt\)

\(=\left.\begin{matrix} 0\\ -1\end{matrix}\right|\left ( \frac{t^6}{6}-\frac{t^7}{7} \right )=\frac{-13}{42}\)

b) Đặt \(\sqrt{e^x-1}=t\) \(\Rightarrow x=\ln (t^2+1)\)

Khi đó

\(\int ^{\ln 2}_{0}\sqrt{e^x-1}dx=\int ^{1}_{0}td(\ln (t^2+1))=\int ^{1}_{0}t.\frac{2t}{t^2+1}dt\)

\(=\int ^{1}_{0}\frac{2t^2}{t^2+1}dt=\int ^{1}_{0}2dt-\int ^{1}_{0}\frac{2}{t^2+1}dt=\left.\begin{matrix} 1\\ 0\end{matrix}\right|2t-\int ^{1}_{0}\frac{2dt}{t^2+1}=2-\int ^{1}_{0}\frac{2dt}{t^2+1}\)

Với \(\int ^{1}_{0}\frac{2dt}{t^2+1}\), đặt \(t=\tan m\)

\(\Rightarrow \int ^{1}_{0}\frac{2dt}{t^2+1}=\int ^{\frac{\pi}{4}}_{0}\frac{2d(\tan m)}{\tan ^2m+1}=\int ^{\frac{\pi}{4}}_{0}2\cos ^2md(\tan m)\)

\(=\int ^{\frac{\pi}{4}}_{0}2dm=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|2m=\frac{\pi}{2}\)

Do đó \(\int ^{\ln 2}_{0}\sqrt{e^x-1}dx=2-\frac{\pi}{2}\)

NV
21 tháng 9 2021

1.

\(y'=6x^2+6\left(m-1\right)x+6\left(m-2\right)=6\left(x+1\right)\left(x+m-2\right)\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-m+2\end{matrix}\right.\)

Phương trình nghịch biến trên đoạn có độ dài lớn hơn 3 khi:

\(\left|-1-\left(-m+2\right)\right|>3\)

\(\Leftrightarrow\left|m-3\right|>3\Rightarrow\left[{}\begin{matrix}m>6\\m< 0\end{matrix}\right.\)

2.

\(y'=-3x^2+6x+m-1\)

\(\Delta'=9+3\left(m-1\right)>0\Rightarrow m>-2\)

Gọi \(x_1;x_2\) là 1 nghiệm của pt \(-3x^2+6x+m-1=0\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=\dfrac{-m+1}{3}\end{matrix}\right.\)

Hàm đồng biến trên đoạn có độ dài lớn hơn 1 khi:

\(\left|x_1-x_2\right|>1\)

\(\Leftrightarrow\left(x_1-x_2\right)^2>1\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2>1\)

\(\Leftrightarrow4-\dfrac{-4m+4}{3}>1\)

\(\Rightarrow m>-\dfrac{5}{4}\) \(\Rightarrow m=-1\)

Có đúng 1 giá trị nguyên âm của m thỏa mãn

NV
21 tháng 9 2021

3.

\(y'=x^2+6\left(m-1\right)x+9\)

\(\Delta'=9\left(m-1\right)^2-9>0\Rightarrow\left[{}\begin{matrix}m>1\\m< 0\end{matrix}\right.\)

Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-6\left(m-1\right)\\x_1x_2=9\end{matrix}\right.\)

\(\left|x_1-x_2\right|=6\sqrt{3}\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=108\)

\(\Leftrightarrow36\left(m-1\right)^2-36=108\)

\(\Rightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)

Có 1 giá trị nguyên âm của m thỏa mãn

NV
21 tháng 9 2021

31.

\(y'=\dfrac{1+m}{\left(x+1\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi:

\(\dfrac{1+m}{\left(x+1\right)^2}>0\Rightarrow m>-1\) (C)

32.

\(y'=\dfrac{4-m^2}{\left(x+4\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi:

\(4-m^2>0\Rightarrow-2< m< 2\)

\(\Rightarrow m=\left\{-1;0;1\right\}\)

Có 3 giá trị nguyên của m

NV
21 tháng 9 2021

33.

\(y'=\dfrac{m-1}{\left(x+1\right)^2}\)

Hàm đồng biến trên từng khoảng xác định khi:

\(m-1>0\Rightarrow m>1\)

34.

\(y'=\dfrac{2m-1}{\left(x+2m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}2m-1>0\\-2m>-3\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{2}< m< \dfrac{3}{2}\)

\(\Rightarrow m=1\)

Có 1 giá trị nguyên của m

8 tháng 9 2021

ko bt sao cj hoi vay

NV
13 tháng 1

\(log_x\left(x^2y^3\right)=log_xx^2+log_xy^3=2+3log_xy\)

\(\Rightarrow2+3log_xy=1\Rightarrow log_xy=-\dfrac{1}{3}\)

\(N=\dfrac{log_x\left(x^2y^3\right)}{log_x\left(\dfrac{\sqrt[5]{x^3y^2}}{xy^3}\right)}=\dfrac{1}{log_x\left(\sqrt[5]{x^3y^2}\right)-log_xxy^3}=\dfrac{1}{log_x\sqrt[5]{x^3}+log_x\sqrt[5]{y^2}-\left(log_xx+log_xy^3\right)}\)

\(=\dfrac{1}{\dfrac{3}{5}+\dfrac{2}{5}log_xy-\left(1+3log_xy\right)}=\dfrac{1}{\dfrac{3}{5}+\dfrac{2}{5}.\left(-\dfrac{1}{3}\right)-1-3.\left(-\dfrac{1}{3}\right)}=\dfrac{15}{7}\)

13 tháng 1

E cảm ơn thầy nhiều ạ 

12 tháng 11 2016

phan la phan so

12 tháng 11 2016

do ko co dau gach ngang

NV
19 tháng 9 2021

16.

Số cạnh của 1 lăng trụ luôn chia hết cho 3 nên A

17.

Chóp có đáy là đa giác n cạnh sẽ có n mặt bên (mỗi cạnh đáy và đỉnh sẽ tạo ra 1 mặt bên tương ứng)

Do đó chóp có n+1 mặt (n mặt bên và 1 mặt đáy)

Chóp có n+1 đỉnh (đáy n cạnh nên có n đỉnh, cộng 1 đỉnh của chóp là n+1)

Do đó số mặt bằng số đỉnh

18. D

19. A

20. C