Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xl ~ mk k bt lm
mà mk tìm đc https://lazi.vn/edu/exercise/cho-duong-tron-tam-o-tu-diem-a-o-ngoai-duong-tron-ve-2-tiep-tuyen-ab-va-ac-b-va-c-la-cac-tiep-diem-oa-cat-bc-tai-e vào thử đi nha
Hình bạn tự vẽ nha
a) Xét đường tròn đường kính MC
Ta có góc MDC=90 độ (góc nội tiếp chắn nửa dt)
Hay góc BDC = 90 độ
Xét tứ giác BADC có
Góc BAC =90 ĐỘ (GT)
Góc BDC =90 độ (cmt)
Mà hai đỉnh của góc này ở vị trí kề nhau do đó tứ giác BADC nt đường tròn ĐK BC
tâm O của dt là trung điểm BC
b)Xét dt đk BC có
Góc ADB=GÓC ACB (hai góc nt cùng chắn cung AB)(1)
Xét đường dt đường kính MC có góc MDN= GÓC MCN (hai góc nt cùng chắn cung MN)
hay Góc BMN = GÓC ABC (2)
Từ (1) (2) suy ra Góc ADB = Góc BDN (= góc ABC)
=> BD là phần giác góc ADN (đpcm)
c)Xét tam giác ABC có
AM=MC(GT)
OB=OC (=BÁN KÍNH CỦA DT NGOẠI TIẾP TỨ GIÁC BADC)
=> OM lad đtb của tam giác ABC
Suy ra OM//AB (t/c Đtb)
Do đó Góc OMC = 90 độ
Suy ra OM là tt của dt dk MC
d)Xét dt dk MC có
Góc MNC = 90 dộ (góc nt chắn nửa dt)
Hay góc PNC =90 độ
Xét Tam giác BPC CÓ
BD vuông góc PC ( góc BDC = 90) (cmt)
AC vuông góc với PB (góc ABC =90)(GT)
Mà hai đường thẳng này cắt nhau tại M do đó M là trực tâm của tam giắc BPC
Mặc khác PN vuông góc BC (Góc BNC = 90 ĐỘ) (cmt)
Do đó PN sẽ đi qua M => Ba điểm P,N,C thẳng hàng
--------------------------------------------------Hết------------------------------------------
Bài làm còn nhiều thiếu xót đặc biệt là cach trình bày mặt dù tớ hiểu mong các góp ý kiến đẻ mình hoàn thiện hơn
a) Do D, E thuộc đường tròn đường kính DE nên \(\widehat{DAE}=\widehat{DHE}=90^o\)
Xét tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.
Do ADHE là hình chữ nhật nên hai đường chéo DE và AH cắt nhau tại trung điểm mỗi đường. Mà O là trung điểm AH nên O là trung điểm DE.
Vậy D, O, E thẳng hàng.
b) Do AH vuông góc BC nên BC cũng là tiếp tuyến tại H của đường tròn (O)
Áp dụng tính chất hai tiếp tuyến cắt nhau, ta có : DM = MH.
Xét tam giác vuông ADH có DM = MH nên DM = MH = MB hay M là trung điểm BH.
Tương tự N là trung điểm HC.
c) Dễ thấy MDEN là hình thang vuông.
Vậy thì \(S_{MDEN}=\frac{\left(MD+EN\right).DE}{2}=\frac{\left(MH+HN\right).AH}{2}\)
\(=\frac{MN.AH}{2}=\frac{\frac{1}{2}BC.AH}{2}=\frac{1}{4}BC.AH=\frac{1}{4}AB.AC\)
\(=\frac{1}{4}.9.8=18\left(cm^2\right)\)