Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(\dfrac{5x+2}{6}\) +\(\dfrac{3-4x}{2}\) = 2-\(\dfrac{x+7}{3}\)
=>5x+2+3(3-4x)=12-2(x+7)
5x+2+9-12x=12-2x-14
-5x=-13
x=\(\dfrac{13}{5}\)
e) \(\dfrac{-20}{9}x +4=\dfrac{8}{3}x-40\)
=>-20x+36=24x-360
-44x=-396
x=9
f) 3x(2x-5)-4X+10=0
6X2 -15X-4X+10=0
2x(3x-2)-5(3x-2)=0
(3x-2)(2x-5)=0
\(\left[\begin{array}{} Biểu thức (3x-2=0)\\ Biểu thức (2x-5=0) \end{array} \right.\)\(\left[\begin{array}{} (x=\dfrac{2}{3})\\ (x=\dfrac{5}{2}) \end{array} \right.\)
j) \(\dfrac{x-45}{55}+\dfrac{x-47}{53}=\dfrac{x-55}{45}+\dfrac{x-53}{47}\)
\(\dfrac{x-45}{55}-1+\dfrac{x-47}{53}-1=\dfrac{x-55}{45}-1+\dfrac{x-53}{47}-1\)
\(\dfrac{x-100}{55}+\dfrac{x-100}{53}=\dfrac{x-100}{45}+\dfrac{x-100}{47}\)
\(\dfrac{x-100}{55}+\dfrac{x-100}{53}-\dfrac{x-100}{45}-\dfrac{x-100}{47}=0\)
(x-100)(\(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\))=0
=> x-100=0(\(\dfrac{1}{55}+\dfrac{1}{53}-\dfrac{1}{45}-\dfrac{1}{47}\) >0)
=> x= 100
b: =>(x+1)(x-1)-(x+3)(x-3)=2x^2+6x
=>2x^2+6x=x^2-1-x^2+9=8
=>2x^2+6x-8=0
=>x^2+3x-4=0
=>(x+4)(x-1)=0
=>x=-4 hoặc x=1(loại)
a: =>x^3+2x-2x(x^2+1)=0
=>x^3+2x-2x^3-2x=0
=>-x^3=0
=>x=0(nhận)
c: =>(x-2)(x+2)-(x+5)^2=x^2-8
=>x^2-4-x^2-10x-25=x^2-8
=>x^2-8=-10x-29
=>x^2+10x+21=0
=>(x+3)(x+7)=0
=>x=-3 hoặc x=-7
\(f,f\left(x\right)⋮g\left(x\right)\\ \Leftrightarrow4x^4-13x^3+23x^2+18x-k=\left(x+4\right)\cdot c\left(x\right)\)
Thay \(x=-4\left(\text{Bổ đề Bézout}\right)\)
\(\Leftrightarrow4\cdot\left(-4\right)^4-13\cdot\left(-4\right)^3+23\cdot\left(-4\right)^2+18\left(-4\right)-k=0\\ \Leftrightarrow1024+832+368-72-k=0\\ \Leftrightarrow k=2152\)
\(d,f\left(x\right)⋮g\left(x\right)\\ \Leftrightarrow x^4-8x^3+24x^2+7x+k=\left(x+4\right)\cdot a\left(x\right)\)
Thay \(x=-4\left(\text{Bổ đề Bézout}\right)\)
\(\Leftrightarrow\left(-4\right)^4-8\left(-4\right)^3+24\left(-4\right)^2+7\left(-4\right)+k=0\\ \Leftrightarrow256+512+384-28+k=0\\ \Leftrightarrow k=-1124\)
\(e,\left(x-2\right)^2-16=0\\ \Leftrightarrow\left(x-6\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\\ f,x^2-5x-14=0\\ \Leftrightarrow\left(x-7\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ g,8x\left(x-3\right)+x-3=0\\ \Leftrightarrow\left(8x+1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{8}\\x=3\end{matrix}\right.\)
a) Đặt \(a=x^2+x\)
Đa thức trở thành: \(a^2-14a+24=\left(a^2-14a+49\right)-25=\left(a-7\right)^2-25=\left(a-7-5\right)\left(a-7+5\right)=\left(a-12\right)\left(a-2\right)\)
Thay a:
\(\left(a-12\right)\left(a-2\right)=\left(x^2+x-12\right)\left(x^2+x-2\right)\)
b) Đặt \(a=x^2+x\)
Đa thức trở thành:
\(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)-12=a^2+4a-12=\left(a^2+4x+4\right)-16=\left(a+2\right)^2-16=\left(a+2-4\right)\left(a+2+4\right)=\left(a-2\right)\left(a+6\right)\)
Thay a:
\(\left(a-2\right)\left(a+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
Bạn chỉ cần áp dụng cái phân tích đa thức thành nhân tử bằng phương pháo đặt nhân tử chung là ra rồi
\(=ab\left(a-b\right)\left(a+b\right)+c^3\left(a-b\right)-c\left(a^3-b^3\right)\)
\(=\left(a-b\right)\left(a^2b+ab^2\right)+c^3\left(a-b\right)-\left(a-b\right)\left(a^2c+abc+b^2c\right)\)
\(=\left(a-b\right)\left(a^2b+ab^2+c^3-a^2c-abc-b^2c\right)\)
\(=\left(a-b\right)\left[ab\left(a-c\right)+b^2\left(a-c\right)-c\left(a^2-c^2\right)\right]\)
\(=\left(a-b\right)\left[ab\left(a-c\right)+b^2\left(a-c\right)-\left(a-c\right)\left(ac+c^2\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(ab+b^2-ac-c^2\right)\)
\(=\left(a-b\right)\left(a-c\right)\left[a\left(b-c\right)+\left(b-c\right)\left(b+c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)
Câu b sai kết quả
Kết quả = 1/x nhé
Câu c sai dòng cuối, dòng cuối vầy nè:
= 2(x - 1)/[(x - 1)(x + 1)]
= 2/(x + 1)
b) \(B=\left(x^3-3x^2y+3xy^2-y^3\right)-6\left(x^2-2xy+y^2\right)+12\left(x-y\right)-8\)
\(B=\left(x-y\right)^3-6\left(x-y\right)^2+12\left(x-y\right)-8\)
\(B=\left(x-y\right)^3-3\cdot2\cdot\left(x-y\right)^2+3\cdot2^2\cdot\left(x-y\right)-2^3\)
\(B=\left[\left(x-y\right)-2\right]^3\)
\(B=\left(x-y-2\right)^3\)
f) \(F=\left(8x^3+12x^2y+6xy^2+y^3\right)+3\left(4x^2+4xy+y^2\right)y+3\left(2x+y\right)y^2+y^3\)
\(F=\left(2x+y\right)^3+3\left(2x+y\right)^2y+3\left(2x+y\right)y^2+y^3\)
\(F=\left[\left(2x+y\right)+y\right]^3\)
\(F=\left(2x+y+y\right)^3\)
\(F=\left(2x+2y\right)^3\)
b: =(x-y)^3-6(x-y)^2+12(x-y)-2^3
=(x-y-2)^3
f: =(2x+y)^3+3(2x+y)^2*y+3*(2x+y)*y^2+y^3
=(2x+y+y)^3
=(2x+2y)^3