
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1.
a. Em tự giải
b.
\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)
Để \(x+y=7\Rightarrow m+1+2m-3=7\)
\(\Rightarrow3m=9\Rightarrow m=3\)
2.
a. Em tự giải
b.
Phương trình có 2 nghiệm khi:
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
Ta có:
\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)
\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)
\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)
Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)
\(\Rightarrow P\ge40\)
Vậy \(P_{min}=40\) khi \(m=-3\)
(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)
Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

a. Câu này đơn giản em tự giải
b.
Xét hai tam giác OIM và OHN có:
\(\left\{{}\begin{matrix}\widehat{OIM}=\widehat{OHN}=90^0\\\widehat{MON}\text{ chung}\\\end{matrix}\right.\) \(\Rightarrow\Delta OIM\sim\Delta OHN\left(g.g\right)\)
\(\Rightarrow\dfrac{OI}{OH}=\dfrac{OM}{ON}\Rightarrow OI.ON=OH.OM\)
Cũng từ 2 tam giác đồng dạng ta suy ra \(\widehat{OMI}=\widehat{ONH}\)
Tứ giác OAMI nội tiếp (I và A cùng nhìn OM dưới 1 góc vuông)
\(\Rightarrow\widehat{OAI}=\widehat{OMI}\)
\(\Rightarrow\widehat{OAI}=\widehat{ONH}\) hay \(\widehat{OAI}=\widehat{ONA}\)
c.
Xét hai tam giác OAI và ONA có:
\(\left\{{}\begin{matrix}\widehat{OAI}=\widehat{ONA}\left(cmt\right)\\\widehat{AON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAI\sim\Delta ONA\left(g.g\right)\)
\(\Rightarrow\dfrac{OA}{ON}=\dfrac{OI}{OA}\Rightarrow OI.ON=OA^2=OC^2\) (do \(OA=OC=R\))
\(\Rightarrow\dfrac{OC}{ON}=\dfrac{OI}{OC}\)
Xét hai tam giác OCN và OIC có:
\(\left\{{}\begin{matrix}\dfrac{OC}{ON}=\dfrac{OI}{OC}\\\widehat{CON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OCN\sim\Delta OIC\left(g.g\right)\)
\(\Rightarrow\widehat{OCN}=\widehat{OIC}=90^0\) hay tam giác ACN vuông tại C
\(\widehat{ABC}\) là góc nt chắn nửa đường tròn \(\Rightarrow BC\perp AB\)
Áp dụng hệ thức lượng trong tam giác vuông ACN với đường cao BC:
\(BC^2=BN.BA=BN.2BH=2BN.BH\) (1)
O là trung điểm AC, H là trung điểm AB \(\Rightarrow OH\) là đường trung bình tam giác ABC
\(\Rightarrow OH=\dfrac{1}{2}BC\)
Xét hai tam giác OHN và EBC có:
\(\left\{{}\begin{matrix}\widehat{OHN}=\widehat{EBC}=90^0\\\widehat{ONH}=\widehat{ECB}\left(\text{cùng phụ }\widehat{IEB}\right)\end{matrix}\right.\) \(\Rightarrow\Delta OHN\sim\Delta EBC\left(g.g\right)\)
\(\Rightarrow\dfrac{OH}{EB}=\dfrac{HN}{BC}\Rightarrow HN.EB=OH.BC=\dfrac{1}{2}BC^2\)
\(\Rightarrow BC^2=2HN.EB\) (2)
(1);(2) \(\Rightarrow BN.BH=HN.BE\)
\(\Rightarrow BN.BH=\left(BN+BH\right).BE\)
\(\Rightarrow\dfrac{1}{BE}=\dfrac{BN+BH}{BN.BH}=\dfrac{1}{BH}+\dfrac{1}{BN}\) (đpcm)

Đáp án b
Các hình màu xanh là phản chiếu của các hình máu cam trong gương.
Nhìn sơ sơ đoán là chọn B
Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh

Bài 4:
a: ΔCAB vuông tại C
=>\(\hat{CAB}+\hat{CBA}=90^0\)
=>\(\hat{CBA}=90^0-70^0=20^0\)
Xét ΔCBA vuông tại C có \(\sin CBA=\frac{CA}{AB}\)
=>\(CA=AB\cdot\sin CBA=10\cdot\sin20\) ≃3,4(dm)
ΔCAB vuông tại C
=>\(CA^2+CB^2=AB^2\)
=>\(CB^2=AB^2-CA^2\)
=>\(CB=\sqrt{AB^2-AC^2}\) ≃9,4(dm)
b: Xét ΔABC vuông tại C có \(cosA=\frac{CA}{AB}\)
Xét ΔCHA vuông tại H có \(cosA=\frac{AH}{AC}\)
Xét ΔCHB vuông tại H có \(\sin B=\frac{CH}{CB}\)
Xét ΔCAB vuông tại C có \(\sin B=\frac{AC}{AB}\)
\(\sin B\cdot cosA=\frac{AC}{AB}\cdot\frac{AH}{AC}=\frac{AH}{AB}\)
Bài 5:
Xét ΔMAB có \(\hat{MBH}\) là góc ngoài tại đỉnh B
nên \(\hat{MBH}=\hat{A}+\hat{BMA}\)
=>\(\hat{BMA}=39^0-18^0=21^0\)
Xét ΔMAB có \(\frac{AB}{\sin AMB}=\frac{MB}{\sin A}\)
=>\(\frac{MB}{\sin18}=\frac{80}{\sin21}\)
=>\(MB=80\cdot\frac{\sin18}{\sin21}\) ≃69(m)
Xét ΔMHB vuông tại H có \(\sin HBM=\frac{HM}{MB}\)
=>\(HM=MB\cdot\sin HBM\) ≃69*sin39≃43,4(m)
=>Chiều cao của ngọn hải đăng là khoảng 43,4 mét


Bài 3:
a: ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC
Xét ΔBOD có
BI là đường cao
BI là đường trung tuyến
Do đó: ΔBOD cân tại B
=>BO=BD
ma BO=OD
nên BO=BD=OD
=>ΔBOD đều
=>\(\hat{BOD}=\hat{BDO}=\hat{OBD}=60^0\)
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó: ΔABD vuông tại B
=>\(\hat{BAD}+\hat{BDA}=90^0\)
=>\(\hat{BAD}=90^0-60^0=30^0\)
Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
=>AB=AC
ΔAIB=ΔAIC
=>\(\hat{IAB}=\hat{IAC}\)
=>AI là phân giác của góc BAC
=>\(\hat{BAC}=2\cdot\hat{BAD}=2\cdot30^0=60^0\)
Xét ΔABC có AB=AC và \(\hat{BAC}=60^0\)
nên ΔABC đều
b: ΔOBD đều
=>BD=OB=R
ΔABD vuông tại B
=>\(BA^2+BD^2=AD^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt3\)
=>\(BA=AC=BC=R\sqrt3\)

Bài 3:
a: \(\left(2x+1\right)\left(x^2+2\right)=0\)
mà \(x^2+2\ge2>0\forall x\)
nên 2x+1=0
=>2x=-1
=>\(x=-\frac12\)
b: \(\left(x^2+4\right)\left(7x-3\right)=0\)
mà \(x^2+4\ge4>0\forall x\)
nên 7x-3=0
=>7x=3
=>\(x=\frac37\)
c: \(\left(x^2+x+1\right)\left(6-2x\right)=0\)
mà \(x^2+x+1=x^2+x+\frac14+\frac34=\left(x+\frac12\right)^2+\frac34\ge\frac34>0\forall x\)
nên 6-2x=0
=>2x=6
=>x=3
d: \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
mà \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)
nên 8x-4=0
=>8x=4
=>\(x=\frac48=\frac12\)
Bài 4:
a: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)
=>(x-2)(3x+5)=(x-2)(2x+2)
=>(x-2)(3x+5-2x-2)=0
=>(x-2)(x+3)=0
=>\(\left[\begin{array}{l}x-2=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\\ x=-3\end{array}\right.\)
b: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
=>(2x+5)(x-4)-(x-5)(4-x)=0
=>(2x+5)(x-4)+(x-5)(x-4)=0
=>(x-4)(2x+5+x-5)=0
=>3x(x-4)=0
=>x(x-4)=0
=>\(\left[\begin{array}{l}x=0\\ x-4=0\end{array}\right.=>\left[\begin{array}{l}x=0\\ x=4\end{array}\right.\)
c: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
=>(3x+1)(3x-1)=(3x+1)(2x-3)
=>(3x+1)(3x-1)-(3x+1)(2x-3)=0
=>(3x+1)(3x-1-2x+3)=0
=>(3x+1)(x+2)=0
=>\(\left[\begin{array}{l}3x+1=0\\ x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac13\\ x=-2\end{array}\right.\)
d: \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
=>\(2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)
=>\(\left(3x+1\right)\left(6x+2-x+2\right)=0\)
=>(3x+1)(5x+4)=0
=>\(\left[\begin{array}{l}3x+1=0\\ 5x+4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=-\frac13\\ x=-\frac45\end{array}\right.\)
e: \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)
=>\(27x^2\left(x+3\right)-12x\left(x+3\right)=0\)
=>3x(x+3)(9x-4)=0
=>x(x+3)(9x-4)=0
=>\(\left[\begin{array}{l}x=0\\ x+3=0\\ 9x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-3\\ x=\frac49\end{array}\right.\)
f: \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)
=>\(\left(4x-1\right)^2=\left(4x+12\right)\left(4x-1\right)\)
=>(4x+12)(4x-1)-\(\left(4x-1\right)^2=0\)
=>(4x-1)(4x+12-4x+1)=0
=>13(4x-1)=0
=>4x-1=0
=>4x=1
=>\(x=\frac14\)
Đổi 1,672m= 167,2cm
167,2cm gấp 88cm số lần là:
167,2:88= 1,9(lần)
Bánh xe sau lăn được 50 vòng thì bánh xe trước lăn được:
50 x 1,9= 95(vòng)