Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác suất cả 3 lần đều không xuất hiện mặt 6 chấm: \(\left(\dfrac{5}{6}\right)^3=\dfrac{125}{216}\)
Xác suất để ít nhất 1 lần xuất hiện mặt 6 chấm:
\(1-\dfrac{125}{216}=\dfrac{91}{216}\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+ax-2}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{ax-2}{\sqrt{x^2+ax-2}+x}=\lim\limits_{x\rightarrow+\infty}\dfrac{a-\dfrac{2}{x}}{\sqrt{1+\dfrac{a}{x}-\dfrac{2}{x^2}}+1}=\dfrac{a}{2}\)
\(\Rightarrow\dfrac{a}{2}=1\Rightarrow a=2\in\left(1;3\right)\)
23.
Gọi M là trung điểm BC
Trong mp (SAM), từ A kẻ \(AH\perp SM\) (1)
Ta có: \(AM\perp BC\) (trung tuyến đồng thời là đường cao trong tam giác đều)
Lại có \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
\(\Rightarrow BC\perp\left(SAM\right)\Rightarrow BC\perp SH\)
(1);(2) \(\Rightarrow SH\perp\left(SBC\right)\)
\(\Rightarrow SH=d\left(A;\left(SBC\right)\right)\)
\(AM=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)
Hệ thức lượng trong tam giác vuông SAM:
\(AH=\dfrac{AM.SA}{\sqrt{AM^2+SA^2}}=\dfrac{a\sqrt{66}}{11}\)
24.
Gọi D, E lần lượt là trung điểm BC, AC
\(\Rightarrow\) DE là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}DE\perp AC\\DE=\dfrac{1}{2}AB\end{matrix}\right.\)
SBC đều \(\Rightarrow SD\perp BC\Rightarrow SD\perp\left(ABC\right)\)
\(\Rightarrow SD\perp AC\)
\(\Rightarrow AC\perp\left(SDE\right)\Rightarrow\widehat{SED}\) là góc giữa (SAC) và (ABC)
\(AB=BC.cos\widehat{ABC}=a.cos30^0=\dfrac{a\sqrt{3}}{2}\)
\(\Rightarrow DE=\dfrac{1}{2}AB=\dfrac{a\sqrt{3}}{4}\)
\(SD=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)
\(tan\varphi=tan\widehat{SED}=\dfrac{SD}{DE}=2\)
Hàm có đúng 1 điểm gián đoạn khi \(x^2-2\left(3a-1\right)x+1=0\) có nghiệm kép
\(\Rightarrow\Delta'=\left(3a-1\right)^2-1=0\)
\(\Rightarrow3a\left(3a-2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=\dfrac{2}{3}\end{matrix}\right.\)
\(\Rightarrow0+\dfrac{2}{3}=\dfrac{2}{3}\)