Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{x^2+bx+2}\right)=\lim\limits_{x\rightarrow+\infty}x\left(a-\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}\right)\)
Nếu \(a\ne1\Rightarrow\lim\limits_{x\rightarrow+\infty}\left(a-\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}\right)=a-1\ne0\)
\(\Rightarrow\lim\limits_{x\rightarrow+\infty}x\left(a-\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}\right)=\infty\) ko thỏa mãn giả thiết \(=4\) (hữu hạn)
\(\Rightarrow a=1\)
\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+bx+2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{-bx-2}{x+\sqrt{x^2+bx+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-b-\dfrac{2}{x}}{1+\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}}=-\dfrac{b}{2}\)
\(\Rightarrow-\dfrac{b}{2}=4\Rightarrow b=-8\)
21.
Giới hạn đã cho hữu hạn khi và chỉ khi \(a=1\)
Khi đó:
\(\lim\limits_{x\rightarrow+\infty}\left(x-\sqrt{x^2+bx+2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2-\left(x^2+bx+2\right)}{x+\sqrt{x^2+bx+2}}=\lim\limits_{x\rightarrow+\infty}\dfrac{-bx-2}{x+\sqrt{x^2+bx+2}}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{-b-\dfrac{2}{x}}{1+\sqrt{1+\dfrac{b}{x}+\dfrac{2}{x^2}}}=\dfrac{-b}{2}\)
\(\Rightarrow-\dfrac{b}{2}=4\Rightarrow b=-8\)
\(\Rightarrow a+b=1-8=-7\)
22.
B sai, do các cạnh bên của chóp đều tạo với đáy các góc bằng nhau
21:
\(y'=\dfrac{\left(x^2-3x+5\right)'\left(x+2\right)-\left(x+2\right)'\left(x^2-3x+5\right)}{\left(x+2\right)^2}\)
\(=\dfrac{\left(2x-3\right)\left(x+2\right)-\left(x^2-3x+5\right)}{\left(x+2\right)^2}\)
\(=\dfrac{2x^2+4x-3x-6-x^2+3x-5}{\left(x+2\right)^2}=\dfrac{x^2+4x-11}{\left(x+2\right)^2}\)
17:
Khi x<>0 thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}\dfrac{1+4x-1}{\sqrt{1+4x}+1}\cdot\dfrac{1}{x}\)
\(=\lim\limits_{x\rightarrow0}\dfrac{4}{\sqrt{1+4x}+1}=\dfrac{4}{1+1}=\dfrac{4}{2}=2\)
=>Chọn B
\(\Leftrightarrow2sinx.cosx-2m.cosx+m-sinx=0\)
\(\Leftrightarrow2cosx\left(sinx-m\right)-\left(sinx-m\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(sinx-m\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{1}{2}\Rightarrow x=\dfrac{\pi}{3}\\sinx=m\end{matrix}\right.\)
Pt có 2 nghiệm thuộc đoạn đã cho khi \(sinx=m\) có đúng 1 nghiệm thuộc đoạn đã cho
\(\Rightarrow\left[{}\begin{matrix}m=1\\-\dfrac{\sqrt{2}}{2}\le m< 0\end{matrix}\right.\)
\(\Rightarrow\) Có 1 giá trị nguyên của m
Lời giải:
Trong khoảng $[\frac{-\pi}{2}; \frac{-\pi}{3}]$ $x$ càng lớn thì $\sin x$ càng lớn
Do đó:
$y_{\min}=y(\frac{-\pi}{2})=-1$
$y_{\max}=y(\frac{-\pi}{3})=\frac{-\sqrt{3}}{2}$
\(y'=\dfrac{-5}{\left(x-3\right)^2}\)
\(\Rightarrow y'\left(4\right)=\dfrac{-5}{\left(4-3\right)^2}=-5\) ; \(y\left(4\right)=\dfrac{2.4-1}{4-3}=7\)
Phương trình tiếp tuyến tại điểm có hoành độ \(x=4\) là:
\(y=-5\left(x-4\right)+7=-5x+27\)
sinx - sin3x - \(\sqrt{3}\left(cosx+sin3x\right)=0\)
⇔ sinx - \(\sqrt{3}cosx-\left(1+\sqrt{3}\right)sin3x\) = 0
⇔ \(2sin\left(x-\dfrac{\pi}{3}\right)-\left(1-\sqrt{3}\right)sin\left(\pi-3x\right)\) = 0
⇔ \(2sin\left(x-\dfrac{\pi}{3}\right)+\left(1-\sqrt{3}\right)sin\left(3x-\pi\right)=0\)
⇔ \(2sin\left(x-\dfrac{\pi}{3}\right)+\left(1-\sqrt{3}\right)sin3\left(x-\dfrac{\pi}{3}\right)=0\)
Đặt a = x - \(\dfrac{\pi}{3}\) ta có phương trình mới
2sina + (1 - \(\sqrt{3}\))sin3a = 0 (1)
Sử dụng công thức sin3a = 3sina - 4sin3a đưa (1) về phương trình bậc 3 ẩn là a. Từ a suy ra x
Đáy là bát giác đều (8 cạnh) nên chóp có 8 mặt bên
Cộng thêm mặt đáy nữa nên ta sẽ có tổng cộng 9 mặt
\(u_1=1=\sqrt{2.0+1}\)
\(u_2=\sqrt{2+u_1^2}=\sqrt{3}=\sqrt{2.1+1}\)
\(u_3=\sqrt{2+u_2^2}=\sqrt{5}=\sqrt{2.2+1}\)
\(\Rightarrow u_n=\sqrt{2\left(n-1\right)+1}=\sqrt{2n-1}\)
\(\Rightarrow v_n=\sqrt{\dfrac{2n-1}{n}}=\sqrt{2-\dfrac{1}{n}}\)
\(\Rightarrow\lim\left(v_n\right)=\lim\sqrt{2-\dfrac{1}{n}}=\sqrt{2}\)