Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 :
\(M=\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
\(=\left(2x-3y-1+2x\right)\left(2x-3y+1-2x\right)-9y^2+4+12xy-4x\)
\(=\left(4x-3y-1\right)\left(1-3y\right)-9y^2+4+12xy-4x\)
\(=4x-12xy-3y+9y^2-1+3y-9y^2+4+12xy-4x=3\)
Vậy biểu thức ko phụ thuộc giá trị biến x
Bài 2 :
a, \(\left(a-3b\right)^2=a^2-6ab+9b^2\)
b, \(x^2-16y^4=\left(x-4y^2\right)\left(x+4y^2\right)\)
c, \(25a^2-\frac{1}{4}b^2=\left(5a-\frac{1}{2}b\right)\left(5a+\frac{1}{2}b\right)\)
Bài 3 :
a, \(9x^2-6x+1=\left(3x-1\right)^2\)
b, \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
c, \(4\left(2x-y\right)^2-8x+4y+1=\left(4x-2y\right)^2-2\left(4x-2y\right)+1=\left(4x-2y-1\right)^2\)
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
Bài 5:
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-4x+3=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=\dfrac{7}{5}\end{matrix}\right.\)
Bài 4:
\(\Leftrightarrow2\left(\dfrac{1}{2}-3x\right)-3\left(\dfrac{9}{2}+2x\right)=42-2\left(\dfrac{1}{2}-4x\right)-6x\)
\(\Leftrightarrow2-6x-\dfrac{27}{2}-6x=42-1+8x-6x\)
\(\Leftrightarrow-12x-\dfrac{23}{2}=2x+41\)
=>-14x=105/2
hay x=-15/4
Bài 4:
a) (2x)2-2.2x.(3/2)+(3/2)2=(2x-3/2)2
b) 4(x2+2x+1)-12x-3=4x2-4x+1=(2x)2-2.2x.1+12=(2x-1)2
c) (5x)2-2.5x.2y+(2y)2=(5x-2y)2
Bài 5:
a) (x+3)3
b)[ \(\left[\left(\sqrt{3}x\right)+2\right]^3\)]
c) (3x+31)3
d) \(\left[x+\sqrt{2}y\right]^3\)
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
Vì ABCD là hình chữ nhật ( gt )
⇒ ∠DAB = ∠ABC = ∠BCD = ∠CDA = \(90^o\)
Vì AH ⊥ BD ( gt )
⇒ ∠AHD = ∠AHB = \(90^o\)
Xét △ADH và △BDA, có
∠AHD = ∠BAD ( = \(90^o\) )
∠ADB chung
⇒ △ADH ∼ △BDA (g-g)
b) Xét △AHB vuông tại H, có :
∠HAB + ∠ABH = \(90^o\) (Tính chất tam giác vuông)
Mà ∠DAH + ∠HAB = \(90^o\)
⇒ ∠DAH = ∠ABH
Xét △ADH và △BAH, có :
∠DAH = ∠ABH (cmt)
∠AHD = ∠AHB (=\(90^o\))
⇒ △ADH ∼ △BAH (g-g)
⇒ \(\dfrac{AH}{BH}=\dfrac{DH}{AH}\left(TSĐD\right)\)
⇒ \(AH^2=BH.DH\)
c) \(AH^2=DH.BH\left(cmt\right)\)
⇒ \(AH^2=144\)
⇒ AH = 12cm
Xét △ADH vuông tại D, có :
\(AH^2+DH^2=AD^2\) (Định lí Py - ta - go)
\(12^2+9^2=AD^2\)
⇒ \(AD^2=225\)
⇒ AD = 15cm
Vì △ADH ∼ △BAH (cmt)
⇒ \(\dfrac{AD}{AB}=\dfrac{AH}{BH}\)
⇒ \(AB=\dfrac{AD.BH}{AH}\)
⇒ AB = 20cm
d) Xét △AHB, có :
K là trung điểm của AH ( gt )
M là trung điểm của BH ( gt )
⇒KM là đường trung bình của △AHB
⇒KM // AB
\(KM=\dfrac{1}{2}AB\)
Vì ABCD là hình chữ nhật ( gt )
⇒ AB // CD
AB = CD
Có KM // AB (cmt)
AB // CD (cmt)
⇒ KM // CD
Vì N là trung điểm của DC ( gt )
⇒ DN = NC =\(\dfrac{1}{2}CD\)
\(KM=\dfrac{1}{2}AB\) (cmt)
AB = CD (cmt)
⇒ KM = DN = NC
Xét tứ giác KMND, có :
KM = DN (CMT)
KM // DN (CMT)
⇒ KMND là hình bình hành
Vì ABCD là hình chữ nhật ( gt )
⇒ AB ⊥ AD
Mà : KM // AB (cmt)
⇒ KM ⊥ AD
Gọi Q là giao điểm của KM với AD
⇒ QM là đường cao của △AMD
Xét △AMD, có :
QM là đường cao của △AMD (cmt)
AH là đường cao của △AMD (AH⊥BC)
AH cắt QM tại K
⇒ KD là đường cao của △AMD
⇒ KD ⊥ AM
Vì KMND là hình bình hành (cmt)
⇒ KD // MN
KD ⊥ AM (CMT)
⇒ MN ⊥ AM
⇒ ∠AMN = \(90^o\)