Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có sin C=AB/BC
=>6/BC=sin30=1/2
=>BC=12cm
=>AC=6*căn 3(cm)
HB=AB^2/BC=3cm
HC=12-3=9cm
b: Xét ΔABH vuông tại H có sin B=AH/AB=1/2
=>góc B=30 độ
=>góc C=60 độ
BH=căn 12^2-6^2=6*căn 3(cm)
CH=AH^2/HB=2*căn 3(cm)
3b.
\(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\)
Pt có 2 nghiệm pb khi \(\left(m+2\right)^2>0\Rightarrow m\ne-2\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-\left(m+1\right)\end{matrix}\right.\)
\(x_1+x_2-2x_1x_2=8\)
\(\Leftrightarrow-m+2\left(m+1\right)=8\)
\(\Rightarrow m=6\) (thỏa mãn)
6.
\(M=x-\sqrt{x}+1=\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(M_{min}=\dfrac{3}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
\(\left(3\sqrt{7}\right)^2=63>28=\left(\sqrt{28}\right)^2\) hoặc \(3\sqrt{7}>2\sqrt{7}=\sqrt{28}\)
5.1) Gọi \(A\left(x_A;y_A\right)\) là giao điểm của \(\left(d_1\right)\) và \(\left(d_2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}y_A=2x_A+1\\y_A=-x_A+3\end{matrix}\right.\Rightarrow2x_A+1=-x_A+3\Rightarrow3x_A=2\Rightarrow x_A=\dfrac{2}{3}\)
\(\Rightarrow y_A=\dfrac{7}{3}\Rightarrow A\left(\dfrac{2}{3};\dfrac{7}{3}\right)\)
2) Vì \(\left(d_3\right)\) đi qua A nên \(\dfrac{7}{3}=\dfrac{2}{3}\left(m-1\right)+3m-2\Rightarrow\dfrac{7}{3}=\dfrac{11}{3}m-\dfrac{8}{3}\)
\(\Rightarrow\dfrac{11}{3}m=5\Rightarrow m=\dfrac{15}{11}\)
3) Gọi \(B\left(x_B;y_B\right)\) là giao điểm của \(\left(d_1\right)\) và \(\left(d_3\right)\)
Vì \(B\in Ox\Rightarrow y_B=0\)
Vì \(B\in\left(d_1\right)\Rightarrow y_B=2x_B+1\Rightarrow0=2x_B+1\Rightarrow x_B=-\dfrac{1}{2}\)
\(\Rightarrow B\left(-\dfrac{1}{2};0\right)\Rightarrow0=-\dfrac{1}{2}\left(m-1\right)+3m-2\Rightarrow0=\dfrac{5}{2}m-\dfrac{3}{2}\)
\(\Rightarrow\dfrac{5}{2}m=\dfrac{3}{2}\Rightarrow m=\dfrac{3}{5}\)
c) Gọi \(C\left(x_C;y_C\right)\) là giao điểm của \(\left(d_2\right)\) và \(\left(d_3\right)\)
Vì \(C\in Oy\Rightarrow x_C=0\)
Vì \(B\in\left(d_2\right)\Rightarrow y_B=-x_B+3\Rightarrow y_B=3\Rightarrow C\left(0;3\right)\)
\(\Rightarrow3=3m-2\Rightarrow3m=5\Rightarrow m=\dfrac{5}{3}\)
Bài 1:
a. Vì $BD, CE$ là đường cao nên $\widehat{BEC}=\widehat{BDC}=90^0$
Mà 2 góc này cùng nhìn cạnh $BC$ nên $BEDC$ là tứ giác nội tiếp.
Hay $B,E,D,C$ cùng thuộc 1 đường tròn.
b. Xét tứ giác $AEHD$ có tổng 2 góc đối nhau $\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0$ nên $AEHD$ là tứ giác nội tiếp
Hay $A,E,H,D$ cùng thuộc 1 đường tròn.
c.
Gọi $I$ là trung điểm $BC$
Xét tam giác $BEC$ vuông tại $E$ nên đường trung tuyến $EI= \frac{BC}{2}=IB=IC$
Tương tự: $DI=IB=IC$
Do đó: $IE=ID=IB=IC$ nên $I$ là tâm đường tròn ngoại tiếp tứ giác $BEDC$
$\Rightarrow BC$ là đường kính
$\Rightarrow BC> ED$