K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2023

\(\dfrac{x-1}{x+2}+\dfrac{6x}{x^2-4}=\dfrac{x+1}{2-x}\left(dkxd:x\ne\pm2\right)\)

\(\Leftrightarrow\dfrac{x-1}{x+2}+\dfrac{6x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{x+1}{x-2}\)

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)+6x+\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=0\)

\(\Leftrightarrow x^2-2x-x+2+6x+x^2+2x+x+2=0\)

\(\Leftrightarrow2x^2+6x+4=0\)

\(\Leftrightarrow2x^2+2x+4x+4=0\)

\(\Leftrightarrow2x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+4=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-1\right\}\)

25 tháng 8 2021

Câu 4:

Xét tam giác ABC có

D là trung điểm của AC(gt)

E là trung điểm của BC(gt)

=> DE là đường trung bình của tam giác ABC

\(\Rightarrow AB=2DE=2.15=30\left(m\right)\)

Câu 5:

Xét hình thang ABCD có:

E là trung điểm của AD(gt)

F là trung điểm của BC(gt)

=> EF là đường trung bình của hình thang ABCD

\(\Rightarrow EF=\dfrac{AB+CD}{2}\Rightarrow45=\dfrac{32+x}{2}\Rightarrow x=45.2-32=58\left(cm\right)\)

Câu 6:

Xét hình thang AMEC có:

 B là trung điểm AC(AB=BC)

BN//CE//AM( cùng vuông góc AD)

=> N là trung điểm ME

=> ME=2.MN=70(cm)

Xét hình thang BNFD có:

C là trung điểm BD(BC=CD)

CE//BN//DF(cùng vuông góc AD)

=> E là trung điểm NF

=> EF=EN=MN=35cm

Ta có: MF = EF+ME=70+35=105(cm)

 

 

 

Câu 5: 

Hình thang ABCD có 

E là trung điểm của AD

F là trung điểm của BC

Do đó: EF là đường trung bình của hình thang ABCD

Suy ra: \(EF=\dfrac{AB+CD}{2}\)

\(\Leftrightarrow x+32=90\)

hay x=58cm

14:

a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

góc N chung

=>ΔHNM đồng dạng với ΔMNP

b: NP=căn 3^2+4^2=5cm

MH=3*4/5=2,4cm

NH=3^2/5=1,8cm

13:

a: 3x+5=x-5

=>2x=-10

=>x=-5

b: (x-2)(2x+5)=0

=>x-2=0 hoặc 2x+5=0

=>x=2 hoặc x=-5/2

c: =>2(5x-2)=3(3x+1)

=>10x-4=9x+3

=>x=7

d: =>(3x+6-x+1)/(x+2)(x-1)=17-3x/(x+2)(x-1)

=>2x+7=17-3x

=>5x=10

=>x=2

14 tháng 11 2023

e: \(\dfrac{x^2+3x+9}{x^3+4x^2+4x}\cdot\dfrac{x^2+2x}{x^3-27x}\)

\(=\dfrac{x^2+3x+9}{x\left(x^2+4x+4\right)}\cdot\dfrac{x\left(x+2\right)}{x\left(x^2-27\right)}\)

\(=\dfrac{x^2+3x+9}{\left(x+2\right)^2}\cdot\dfrac{x+2}{x\left(x^2-27\right)}\)

\(=\dfrac{\left(x^2+3x+9\right)}{\left(x+2\right)\cdot x\left(x^2-27\right)}\)

f: \(\dfrac{2x^2+4xy+2y^2}{5x-5y}\cdot\dfrac{15x-15y}{2x^3+2y^3}\)

\(=\dfrac{2\left(x^2+2xy+y^2\right)}{5\left(x-y\right)}\cdot\dfrac{15\left(x-y\right)}{2\left(x^3+y^3\right)}\)

\(=\dfrac{\left(x+y\right)^2}{1}\cdot\dfrac{3}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)

\(=\dfrac{3\left(x+y\right)}{x^2-xy+y^2}\)

g: \(\dfrac{x^3-4x}{x^2-7x+12}\cdot\dfrac{x-4}{x^2-2x}\)

\(=\dfrac{x\left(x^2-4\right)}{\left(x-3\right)\left(x-4\right)}\cdot\dfrac{x-4}{x\left(x-2\right)}\)

\(=\dfrac{x^2-4}{\left(x-3\right)\left(x-2\right)}=\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+2}{x-3}\)

14 tháng 11 2023

Em cảm ơn nhìu ạ 😍❤️

m: \(=x^m\cdot x^2-x^m=x^m\left(x^2-1\right)=x^m\left(x-1\right)\left(x+1\right)\)

n: \(=5\cdot x^m\cdot x^2+10x^2\)

\(=5x^2\left(x^m+2\right)\)

o: \(=5x\left(x-2y\right)+2\left(x-2y\right)^2\)

\(=\left(x-2y\right)\left(5x+2x-4y\right)\)

=(x-2y)(7x-4y)

p: \(=7x\left(y-4\right)^2+\left(y-4\right)^3\)

\(=\left(y-4\right)^2\cdot\left(7x+y-4\right)\)

q: \(\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)

\(=\left(4x-8\right)\left(x^2+6-x-7\right)-9\left(4x-8\right)\)

\(=\left(4x-8\right)\left(x^2-x-10\right)\)

\(=4\left(x-2\right)\left(x^2-x-10\right)\)

5 tháng 8 2023

m) \(x^{m+2}-x^m\)

\(=x^m\cdot x^2-x^m\)

\(=x^m\left(x^2-1\right)\)

\(=x^m\left(x^2-1^2\right)\)

\(=x^m\left(x-1\right)\left(x+1\right)\)

n) \(5x^{m+2}+10x^2\)

\(=5x^m\cdot x^2+10x^2\)

\(=5x^2\cdot x^m+10x^2\)

\(=5x^2\left(x^m+2\right)\)

o) \(5x\left(x-2y\right)+2\left(2y-x\right)^2\)

\(=5x\left(x-2y\right)+2\left(x-2y\right)^2\)

\(=\left(x-2y\right)\left[5x+2\left(x-2y\right)\right]\)

\(=\left(x-2y\right)\left(5x+2x-4y\right)\)

\(=\left(x-2y\right)\left(7x-4y\right)\)

p) \(7x\left(y-4\right)^2-\left(4-y\right)^3\)

\(=7x\left(4-y\right)^2-\left(4-y\right)^3\)

\(=\left(4-y\right)^2\left[7x-\left(4-y\right)\right]\)

\(=\left(4-y\right)^2\left(7x-4+y\right)\)

q) \(\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)

\(=4\left(x-2\right)\left(x^2+6\right)-4\left(x-2\right)\left(x+7\right)-36\left(x-2\right)\)

\(=4\left(x-2\right)\left[\left(x^2+6\right)-\left(x+7\right)-9\right]\)

\(=4\left(x-2\right)\left(x^2+6-x-7-9\right)\)

\(=4\left(x-2\right)\left(x^2-x-10\right)\)

29 tháng 12 2021

14: \(=\dfrac{4x+7+1}{\left(x+2\right)\left(4x+7\right)}=\dfrac{4}{4x+7}\)

31 tháng 10 2023

a) ∆ABC vuông tại A

⇒ BC² = AC² + AB² (Pytago)

= 10² + 5²

= 125

⇒ BC = 55 (cm)

AM là đường trung tuyến ứng với cạnh huyền BC

⇒ AM = BC : 2 = 5√5/2 (cm)

b) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 24² + 7²

= 625

⇒ BC = 25 (cm)

AM là đường trung tuyến ứng với cạnh huyền BC

⇒ AM = BC : 2 = 25/2 (cm)

c) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= 4² + 3²

= 25

⇒ BC = 5 (cm)

AM là đường trung tuyến ứng với cạnh huyền BC

⇒ AM = BC : 2 = 5/2 (cm)

31 tháng 10 2023

Em cảm ơn nhiều ạ 😍❤️

29 tháng 4 2022

1. Có sẵn kết quả kìa:))

2.\(B=\dfrac{2x-1}{x+1}-\dfrac{x+1}{x-1}-\dfrac{6}{\left(x-1\right)\left(x+1\right)}\)

\(B=\dfrac{\left(2x-1\right)\left(x-1\right)-\left(x+1\right)\left(x+1\right)-6}{\left(x-1\right)\left(x+1\right)}\)

\(B=\dfrac{2x^2-2x-x+1-x^2-2x-1-6}{\left(x-1\right)\left(x+1\right)}\)

\(B=\dfrac{x^2-5x-6}{\left(x-1\right)\left(x+1\right)}\)

\(B=\dfrac{\left(x-6\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(B=\dfrac{x-6}{x-1}\left(đpcm\right)\)

 

29 tháng 4 2022

chị sợ ai nhất trong này :>?

19 tháng 12 2023

a: \(VP=a^3+b^3+c^3-3bac\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=VT\)

b: \(VT=\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)\)

\(=3a^2+15a+2ab+10b-a-5-2ab+4b\)

\(=3a^2+14a+14b-5\)

\(VP=\left(3a+5\right)\left(a+3\right)+2\left(7b-10\right)\)

\(=3a^2+9a+5a+15+14b-20\)

\(=3a^2+14a+14b-5\)

=>VT=VP

c: \(VT=a\left(b-x\right)+x\left(a+b\right)\)

\(=ab-ax+ax+bx\)

\(=ab+bx=b\left(a+x\right)=VP\)

d: \(VT=a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)\)

\(=ab-ac-ab-bc+ca-cb\)

\(=-2bc\)

=VP

o: x^4+x^3+x^2-1

=x^3(x+1)+(x-1)(x+1)

=(x+1)(x^3+x-1)

q: \(=\left(x^3-y^3\right)+xy\left(x-y\right)\)

=(x-y)(x^2+xy+y^2)+xy(x-y)

=(x-y)(x^2+2xy+y^2)

=(x-y)(x+y)^2

s: =(2xy)^2-(x^2+y^2-1)^2

=(2xy-x^2-y^2+1)(2xy+x^2+y^2-1)

=[1-(x^2-2xy+y^2]+[(x+y)^2-1]

=(1-x+y)(1+x-y)(x+y-1)(x+y+1)

u: =(x^2-y^2)-4(x+y)

=(x+y)(x-y)-4(x+y)

=(x+y)(x-y-4)

x: =(x^3-y^3)-(3x-3y)

=(x-y)(x^2+xy+y^2)-3(x-y)

=(x-y)(x^2+xy+y^2-3)

z: =3(x-y)+(x^2-2xy+y^2)

=3(x-y)+(x-y)^2

=(x-y)(x-y+3)

29 tháng 8 2023

o) \(x^4+x^3+x^2-1\)

\(=\left(x^4+x^3\right)+\left(x^2-1\right)\)

\(=x^3\left(x+1\right)+\left(x+1\right)\left(x-1\right)\)

\(=\left(x+1\right)\left(x^3+x-1\right)\)

q) \(x^3+x^2y-xy^2-y^3\)

\(=\left(x^3+x^2y\right)-\left(xy^2+y^3\right)\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)\)

\(=\left(x+y\right)^2\left(x-y\right)\)

s) \(4x^2y^2-\left(x^2+y^2-1\right)^2\)

\(=\left(2xy\right)^2-\left(x^2+y^2-1\right)^2\)

\(=\left(2xy-x^2-y^2+1\right)\left(2xy+x^2+y^2-1\right)\)

\(=-\left(x^2-2xy+y^2-1\right)\left(x^2+2xy+y^2-1\right)\)

\(=-\left(x-y-1\right)\left(x-y+1\right)\left(x+y+1\right)\left(x+y-1\right)\)

u) \(x^2-y^2-4x-4y\)

\(=\left(x^2-y^2\right)-\left(4x+4y\right)\)

\(=\left(x+y\right)\left(x-y\right)-4\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-4\right)\)

x) \(x^3-y^3-3x+3y\)

\(=\left(x^3-y^3\right)-\left(3x-3y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-3\right)\)

z) \(3x-3y+x^2-2xy+y^2\)

\(=\left(3x-3y\right)+\left(x^2-2xy+y^2\right)\)

\(=3\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(3+x-y\right)\)