Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: AH=căn 9*16=12cm
AC=căn 12^2+16^2=20cm
HK=16*12/20=192/20=9,6cm
5:
a: Xét ΔMNP vuông tại N và ΔMHN vuông tại H có
góc M chung
=>ΔMNP đồng dạng với ΔMHN
b: NH=căn 16*9=12cm
NP=căn 16^2+12^2=20cm
HK=16*12/20=192/20=9,6cm
14:
a: Sxq=(2+1,5)*2*1,2=2,4*3,5=8,4m2
V=2*1,5*1,2=2*1,8=3,6m3
b: Bể chứa được tối đa là: 3,6*1000=3600 lít
Câu 6:
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
Bài 4:
a) Xét tứ giác DMEC có
ME//DC(gt)
MD//EC(gt)
Do đó: DMEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: CDME là hình bình hành(cmt)
nên Hai đường chéo CM và DE cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà I là trung điểm của DE(gt)
nên I là trung điểm của CM
hay C,M,I thẳng hàng
Vì ABCD là hình chữ nhật ( gt )
⇒ ∠DAB = ∠ABC = ∠BCD = ∠CDA = \(90^o\)
Vì AH ⊥ BD ( gt )
⇒ ∠AHD = ∠AHB = \(90^o\)
Xét △ADH và △BDA, có
∠AHD = ∠BAD ( = \(90^o\) )
∠ADB chung
⇒ △ADH ∼ △BDA (g-g)
b) Xét △AHB vuông tại H, có :
∠HAB + ∠ABH = \(90^o\) (Tính chất tam giác vuông)
Mà ∠DAH + ∠HAB = \(90^o\)
⇒ ∠DAH = ∠ABH
Xét △ADH và △BAH, có :
∠DAH = ∠ABH (cmt)
∠AHD = ∠AHB (=\(90^o\))
⇒ △ADH ∼ △BAH (g-g)
⇒ \(\dfrac{AH}{BH}=\dfrac{DH}{AH}\left(TSĐD\right)\)
⇒ \(AH^2=BH.DH\)
c) \(AH^2=DH.BH\left(cmt\right)\)
⇒ \(AH^2=144\)
⇒ AH = 12cm
Xét △ADH vuông tại D, có :
\(AH^2+DH^2=AD^2\) (Định lí Py - ta - go)
\(12^2+9^2=AD^2\)
⇒ \(AD^2=225\)
⇒ AD = 15cm
Vì △ADH ∼ △BAH (cmt)
⇒ \(\dfrac{AD}{AB}=\dfrac{AH}{BH}\)
⇒ \(AB=\dfrac{AD.BH}{AH}\)
⇒ AB = 20cm
d) Xét △AHB, có :
K là trung điểm của AH ( gt )
M là trung điểm của BH ( gt )
⇒KM là đường trung bình của △AHB
⇒KM // AB
\(KM=\dfrac{1}{2}AB\)
Vì ABCD là hình chữ nhật ( gt )
⇒ AB // CD
AB = CD
Có KM // AB (cmt)
AB // CD (cmt)
⇒ KM // CD
Vì N là trung điểm của DC ( gt )
⇒ DN = NC =\(\dfrac{1}{2}CD\)
\(KM=\dfrac{1}{2}AB\) (cmt)
AB = CD (cmt)
⇒ KM = DN = NC
Xét tứ giác KMND, có :
KM = DN (CMT)
KM // DN (CMT)
⇒ KMND là hình bình hành
Vì ABCD là hình chữ nhật ( gt )
⇒ AB ⊥ AD
Mà : KM // AB (cmt)
⇒ KM ⊥ AD
Gọi Q là giao điểm của KM với AD
⇒ QM là đường cao của △AMD
Xét △AMD, có :
QM là đường cao của △AMD (cmt)
AH là đường cao của △AMD (AH⊥BC)
AH cắt QM tại K
⇒ KD là đường cao của △AMD
⇒ KD ⊥ AM
Vì KMND là hình bình hành (cmt)
⇒ KD // MN
KD ⊥ AM (CMT)
⇒ MN ⊥ AM
⇒ ∠AMN = \(90^o\)
a: Xet ΔHAB và ΔHCA có
góc HAB=góc HCA
góc AHB=góc CHA
=>ΔHAB đồg dạng với ΔHCA
b: \(HB=\sqrt{4.5^2-3.6^2}=2.7\left(cm\right)\)
BC=4,5^2/2,7=7,5cm
c: Xét ΔCMN vuông tại M và ΔCAB vuông tại A có
góc C chung
=>ΔCMN đồng dạng với ΔCAB
=>CM/CA=CN/CB
=>CM*CB=CA*CN
=>AB*BN=1/2*BC^2
Bài 3:
c: Ta có: \(3x^2+7x=10\)
\(\Leftrightarrow3x^2+7x-10=0\)
\(\Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\)